IEEE Power & Energy Magazine - May/June 2014 - 120

variables and the five different reference-frame theories. needless to say, it
was nice that the output torque curve
was the same for all six simulations.
Chapter 7 goes into more detail; addressing the operational impedances and
time constants. The introduction suggests
that, for solid iron rotor machines, you
may need as many as four rotor windings
in each axis to evaluate transient dynamics. This chapter looks
into the synchronous
machine reactances,
time constants, and
short-circuit characteristics. Finally the chapter discusses the pros
and cons of parameters from frequencyresponse characteristics. The authors point
out that the frequency
range from 0.05 to 5
hz should be carefully evaluated to insure
accuracy in dynamic and transient studies.
Chapter 8 addresses three alternate
forms of machine equations: 1) linearized (small-displacement) formulation
for operating point stability, 2) neglecting stator current transients for largeexcursion transient studies, and 3) the
voltage-behind reactance formulation.
The chapter goes into the details of
each transformation for the synchronous and induction machines.
Chapter 9 takes up the issue of
unbalanced operation and the singlephase induction motor. The chapter
starts out with a brief discussion of
symmetrical components, the unbalance analysis tool from the 1900s. The
authors go on to show that unbalance
phase variables can be expressed as a
series of balanced sets in the arbitrary
reference frame with coefficients that
may be constraint or time varying.
As the authors point out, there are a
plethora of textbooks on dc machines.
Chapter 10 reviews the theory of the dc
and PM machines. The last half of the
chapter contains a thorough discussion
of converter drives.
Chapter 11 begins the development of basic converter operation. The

semicontrolled single- and three-phase
load commutated converters are introduced. Models for the average-value
and dynamic average-value converters
are developed.
Throughout this text, a three-phase
variable-frequency source was often
mentioned; well here it is in Chapter 12.
The chapter gets right into the operation of a six-stepped,
three-phase bridge.
This is commonly
known as pulse-width
modulation. several
other modulation strategies are introduced.
The previous two
chapters paved the
way for Chapter 13,
which gets to the
heart of the popular induction motor
drive. several control
strategies are evaluated. The first is the volts-per-hertz control. volts-per-hertz control is simple,
inexpensive, and open loop; the control
does not require a speed feedback. Constant slip control, with proper modulation, can provide a current-based operation; this will achieve an optimal torque
for a given value of stator current with
maximum efficiency. The field-orientated control will make the drive act as
a torque transducer. The direct torque
control is another method of regulating
torque. Finally, we know that increasing
rotor resistance can increase starting
torque and lower reactive power during
starting. The slip energy recovery drive
achieves these advantages but without
increasing losses at operating speed.
Chapter 14 covers, perhaps, the second most-used adjustable speed drive,
the PM ac motor. in this chapter the
three-phase bridge rectifier described
in Chapter 12 is the converter drive
used; here it is referred to as an inverter. both the voltage-source and the
current-regulated drives are studied.
Average-value models for each drive
are developed. This chapter points out
that the current-regulated inverter drive
has a few advantages. since torque is
a function of current, the torque can

For those with a
need for electric
machinery
modeling and
simulation,
you will enjoy
this book.

120

ieee power & energy magazine

be easily controlled. This drive is not
susceptible to changes in the machines
parameters. Also, current-regulated drives
are current limiting so fault currents
and starting current can be automatically limited.
Chapter 15 is a new chapter to this
third edition; it tackles the topic of motor design. The authors chose the PM
motor on a dc bus. i am a bit puzzled-
why didn't they select the very popular
induction motor on an ac bus? Another
issue, although the reader is forewarned, structural and thermal issues
as well as several loss mechanisms are
not taken into consideration. Thermal
issues are one of the leading causes of
motor failures. who would purchase a
motor under these circumstances? having said this; the chapter is filled with
very useful information on a host of
issues that a motor designer has to balance to create a quality product meeting all the performance requirements. i
especially enjoyed reviewing this chapter as it is an excellent introduction to
motor design.
one of the features of this volume,
not often found in other technical
books, is the amount of explanation offered. There is a lot of text, a lot of excellent and informative discussion about
each chapter and the concepts covered.
For those with a need for electric machinery modeling and simulation, you
will enjoy this book. The in-depth explanation of the various reference-frame
theories is outstanding. The authors
went to great length to detail the use
of each reference frame to the evaluation of synchronous, induction, and PM
machines. however, if you are a utility
plant engineer looking for information
about motor types, application, operation, testing, or maintenance, this is not
the book for you. Again, for those interested in modeling and the fundamentals
of reference-frame theory for the analysis of motors, generators, and drive systems, i recommend this excellent text.
-James R. Michalec
p&e

may/june 2014



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - May/June 2014

IEEE Power & Energy Magazine - May/June 2014 - Cover1
IEEE Power & Energy Magazine - May/June 2014 - Cover2
IEEE Power & Energy Magazine - May/June 2014 - 1
IEEE Power & Energy Magazine - May/June 2014 - 2
IEEE Power & Energy Magazine - May/June 2014 - 3
IEEE Power & Energy Magazine - May/June 2014 - 4
IEEE Power & Energy Magazine - May/June 2014 - 5
IEEE Power & Energy Magazine - May/June 2014 - 6
IEEE Power & Energy Magazine - May/June 2014 - 7
IEEE Power & Energy Magazine - May/June 2014 - 8
IEEE Power & Energy Magazine - May/June 2014 - 9
IEEE Power & Energy Magazine - May/June 2014 - 10
IEEE Power & Energy Magazine - May/June 2014 - 11
IEEE Power & Energy Magazine - May/June 2014 - 12
IEEE Power & Energy Magazine - May/June 2014 - 13
IEEE Power & Energy Magazine - May/June 2014 - 14
IEEE Power & Energy Magazine - May/June 2014 - 15
IEEE Power & Energy Magazine - May/June 2014 - 16
IEEE Power & Energy Magazine - May/June 2014 - 17
IEEE Power & Energy Magazine - May/June 2014 - 18
IEEE Power & Energy Magazine - May/June 2014 - 19
IEEE Power & Energy Magazine - May/June 2014 - 20
IEEE Power & Energy Magazine - May/June 2014 - 21
IEEE Power & Energy Magazine - May/June 2014 - 22
IEEE Power & Energy Magazine - May/June 2014 - 23
IEEE Power & Energy Magazine - May/June 2014 - 24
IEEE Power & Energy Magazine - May/June 2014 - 25
IEEE Power & Energy Magazine - May/June 2014 - 26
IEEE Power & Energy Magazine - May/June 2014 - 27
IEEE Power & Energy Magazine - May/June 2014 - 28
IEEE Power & Energy Magazine - May/June 2014 - 29
IEEE Power & Energy Magazine - May/June 2014 - 30
IEEE Power & Energy Magazine - May/June 2014 - 31
IEEE Power & Energy Magazine - May/June 2014 - 32
IEEE Power & Energy Magazine - May/June 2014 - 33
IEEE Power & Energy Magazine - May/June 2014 - 34
IEEE Power & Energy Magazine - May/June 2014 - 35
IEEE Power & Energy Magazine - May/June 2014 - 36
IEEE Power & Energy Magazine - May/June 2014 - 37
IEEE Power & Energy Magazine - May/June 2014 - 38
IEEE Power & Energy Magazine - May/June 2014 - 39
IEEE Power & Energy Magazine - May/June 2014 - 40
IEEE Power & Energy Magazine - May/June 2014 - 41
IEEE Power & Energy Magazine - May/June 2014 - 42
IEEE Power & Energy Magazine - May/June 2014 - 43
IEEE Power & Energy Magazine - May/June 2014 - 44
IEEE Power & Energy Magazine - May/June 2014 - 45
IEEE Power & Energy Magazine - May/June 2014 - 46
IEEE Power & Energy Magazine - May/June 2014 - 47
IEEE Power & Energy Magazine - May/June 2014 - 48
IEEE Power & Energy Magazine - May/June 2014 - 49
IEEE Power & Energy Magazine - May/June 2014 - 50
IEEE Power & Energy Magazine - May/June 2014 - 51
IEEE Power & Energy Magazine - May/June 2014 - 52
IEEE Power & Energy Magazine - May/June 2014 - 53
IEEE Power & Energy Magazine - May/June 2014 - 54
IEEE Power & Energy Magazine - May/June 2014 - 55
IEEE Power & Energy Magazine - May/June 2014 - 56
IEEE Power & Energy Magazine - May/June 2014 - 57
IEEE Power & Energy Magazine - May/June 2014 - 58
IEEE Power & Energy Magazine - May/June 2014 - 59
IEEE Power & Energy Magazine - May/June 2014 - 60
IEEE Power & Energy Magazine - May/June 2014 - 61
IEEE Power & Energy Magazine - May/June 2014 - 62
IEEE Power & Energy Magazine - May/June 2014 - 63
IEEE Power & Energy Magazine - May/June 2014 - 64
IEEE Power & Energy Magazine - May/June 2014 - 65
IEEE Power & Energy Magazine - May/June 2014 - 66
IEEE Power & Energy Magazine - May/June 2014 - 67
IEEE Power & Energy Magazine - May/June 2014 - 68
IEEE Power & Energy Magazine - May/June 2014 - 69
IEEE Power & Energy Magazine - May/June 2014 - 70
IEEE Power & Energy Magazine - May/June 2014 - 71
IEEE Power & Energy Magazine - May/June 2014 - 72
IEEE Power & Energy Magazine - May/June 2014 - 73
IEEE Power & Energy Magazine - May/June 2014 - 74
IEEE Power & Energy Magazine - May/June 2014 - 75
IEEE Power & Energy Magazine - May/June 2014 - 76
IEEE Power & Energy Magazine - May/June 2014 - 77
IEEE Power & Energy Magazine - May/June 2014 - 78
IEEE Power & Energy Magazine - May/June 2014 - 79
IEEE Power & Energy Magazine - May/June 2014 - 80
IEEE Power & Energy Magazine - May/June 2014 - 81
IEEE Power & Energy Magazine - May/June 2014 - 82
IEEE Power & Energy Magazine - May/June 2014 - 83
IEEE Power & Energy Magazine - May/June 2014 - 84
IEEE Power & Energy Magazine - May/June 2014 - 85
IEEE Power & Energy Magazine - May/June 2014 - 86
IEEE Power & Energy Magazine - May/June 2014 - 87
IEEE Power & Energy Magazine - May/June 2014 - 88
IEEE Power & Energy Magazine - May/June 2014 - 89
IEEE Power & Energy Magazine - May/June 2014 - 90
IEEE Power & Energy Magazine - May/June 2014 - 91
IEEE Power & Energy Magazine - May/June 2014 - 92
IEEE Power & Energy Magazine - May/June 2014 - 93
IEEE Power & Energy Magazine - May/June 2014 - 94
IEEE Power & Energy Magazine - May/June 2014 - 95
IEEE Power & Energy Magazine - May/June 2014 - 96
IEEE Power & Energy Magazine - May/June 2014 - 97
IEEE Power & Energy Magazine - May/June 2014 - 98
IEEE Power & Energy Magazine - May/June 2014 - 99
IEEE Power & Energy Magazine - May/June 2014 - 100
IEEE Power & Energy Magazine - May/June 2014 - 101
IEEE Power & Energy Magazine - May/June 2014 - 102
IEEE Power & Energy Magazine - May/June 2014 - 103
IEEE Power & Energy Magazine - May/June 2014 - 104
IEEE Power & Energy Magazine - May/June 2014 - 105
IEEE Power & Energy Magazine - May/June 2014 - 106
IEEE Power & Energy Magazine - May/June 2014 - 107
IEEE Power & Energy Magazine - May/June 2014 - 108
IEEE Power & Energy Magazine - May/June 2014 - 109
IEEE Power & Energy Magazine - May/June 2014 - 110
IEEE Power & Energy Magazine - May/June 2014 - 111
IEEE Power & Energy Magazine - May/June 2014 - 112
IEEE Power & Energy Magazine - May/June 2014 - 113
IEEE Power & Energy Magazine - May/June 2014 - 114
IEEE Power & Energy Magazine - May/June 2014 - 115
IEEE Power & Energy Magazine - May/June 2014 - 116
IEEE Power & Energy Magazine - May/June 2014 - 117
IEEE Power & Energy Magazine - May/June 2014 - 118
IEEE Power & Energy Magazine - May/June 2014 - 119
IEEE Power & Energy Magazine - May/June 2014 - 120
IEEE Power & Energy Magazine - May/June 2014 - 121
IEEE Power & Energy Magazine - May/June 2014 - 122
IEEE Power & Energy Magazine - May/June 2014 - 123
IEEE Power & Energy Magazine - May/June 2014 - 124
IEEE Power & Energy Magazine - May/June 2014 - 125
IEEE Power & Energy Magazine - May/June 2014 - 126
IEEE Power & Energy Magazine - May/June 2014 - 127
IEEE Power & Energy Magazine - May/June 2014 - 128
IEEE Power & Energy Magazine - May/June 2014 - Cover3
IEEE Power & Energy Magazine - May/June 2014 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091021
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070821
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050621
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030421
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010221
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com