IEEE Power & Energy Magazine - May/June 2015 - 30

Smart grid technologies, developed by the DOE OE,
are being applied to customer-based, distribution,
and transmission systems.

Enhance System Design for Resiliency
The development of new materials and designs for electric
systems and components to be more resilient to extreme
events is needed. This development includes "hardening" the
existing electricity delivery infrastructure (e.g., distribution
lines, poles, substations). Design and construction standards
for higher performance will be required but dependent on
the local conditions of the facilities. An industry study on the
myriad hardening measures concluded that widespread system hardening is cost prohibitive. Innovative R&D is needed
for developing and implementing cost-effective strengthening measures (such as those for lines and poles, hydrophobic
coatings, dynamic circuit reconfiguration and microgrids) as
well as for resilient design tools to enable grid designers to
prioritize cost-effective system upgrades and expansions.

Improve Preparedness and Mitigation Measures
Simulation tools, equipped with environmental forecasting and damage prediction models, need to be developed
to provide high-fidelity system performance predictions
under extreme event scenarios. R&D on monitoring

predictive failure modes of electric equipment is needed
to provide timely information on maintenance, repair,
and replacement actions before failures occur. New tools
for resilience assessments that address technical, organizational, social, and economical dimensions are needed
to determine what key aspects of resilience measures are
lacking (at the facility, sector, community, and regional
levels) and their corresponding resilience-enhancing
measures to mitigate against system risks. R&D is also
needed for improved flexibility and robustness, which
includes power electronic-based controllers to enable the
routing of power around damaged/impacted areas to continue delivery of electricity to critical loads, energy storage to support renewable energy integration and improve
system stability, and microgrids with the ability to continue operating and to serve as a grid resource during grid
disturbances.

Improve System Response and Recovery
Improved situational awareness and its prerequisite of a
more resilient communications infrastructure are two key

table 1. The top R&D needs and projects identified at the 2014 DOE resilient electric distribution grid R&D workshop.
Area

R&D Needs

Design,
preparedness,
and planning

Design of segmented and agile
distributed system

*	 Emergency	controls,	segmentation,	and	communications
*	 Microgrid	to	feeder	integration

Big data and analytics

*	 Multiscale	modeling:	distribution	and	transmission
*	 Real-time	database	with	speed	and	accuracy

Stochastic and uncertainty

*	 Robust	control	to	uncertain	data
*	 Predictive	models

Proactive assessment of damage
(automated calls to customers, smart
meters)

*	 Damage	assessment	
*	 Unmanned	aerial	vehicles	to	support	real-time	Google	Maps
*	 New	devices	to	support	degradation	identification
*	 Hardening	of	communications

Situational awareness

*	 Development	of	architecture
*	 State	estimation	with	new	data	and	new	devices
*	 Cyberphysical	 degradation	 and	 the	 necessary	 understanding	 to	
respond to it when it occurs
*	 Three-phase	state	estimation

Decision support to determine
restoration priorities

*	 Development	of		technologies	to	find	alternative	restoration	strategies
*	 Cost-effective	resilient	control	systems
*	 Coupling	of	electric	restoration	models	to	other	infrastructure	models
*	 Integration	of	microgrids	to	distribution	management	system
*	 Advancement	 of	 standardization	 of	 microgrid	 resources	 such	 as	
inverters and distributed generation

Operational
response and
system recovery

30

ieee power & energy magazine

R&D Projects

may/june 2015



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - May/June 2015

IEEE Power & Energy Magazine - May/June 2015 - Cover1
IEEE Power & Energy Magazine - May/June 2015 - Cover2
IEEE Power & Energy Magazine - May/June 2015 - 1
IEEE Power & Energy Magazine - May/June 2015 - 2
IEEE Power & Energy Magazine - May/June 2015 - 3
IEEE Power & Energy Magazine - May/June 2015 - 4
IEEE Power & Energy Magazine - May/June 2015 - 5
IEEE Power & Energy Magazine - May/June 2015 - 6
IEEE Power & Energy Magazine - May/June 2015 - 7
IEEE Power & Energy Magazine - May/June 2015 - 8
IEEE Power & Energy Magazine - May/June 2015 - 9
IEEE Power & Energy Magazine - May/June 2015 - 10
IEEE Power & Energy Magazine - May/June 2015 - 11
IEEE Power & Energy Magazine - May/June 2015 - 12
IEEE Power & Energy Magazine - May/June 2015 - 13
IEEE Power & Energy Magazine - May/June 2015 - 14
IEEE Power & Energy Magazine - May/June 2015 - 15
IEEE Power & Energy Magazine - May/June 2015 - 16
IEEE Power & Energy Magazine - May/June 2015 - 17
IEEE Power & Energy Magazine - May/June 2015 - 18
IEEE Power & Energy Magazine - May/June 2015 - 19
IEEE Power & Energy Magazine - May/June 2015 - 20
IEEE Power & Energy Magazine - May/June 2015 - 21
IEEE Power & Energy Magazine - May/June 2015 - 22
IEEE Power & Energy Magazine - May/June 2015 - 23
IEEE Power & Energy Magazine - May/June 2015 - 24
IEEE Power & Energy Magazine - May/June 2015 - 25
IEEE Power & Energy Magazine - May/June 2015 - 26
IEEE Power & Energy Magazine - May/June 2015 - 27
IEEE Power & Energy Magazine - May/June 2015 - 28
IEEE Power & Energy Magazine - May/June 2015 - 29
IEEE Power & Energy Magazine - May/June 2015 - 30
IEEE Power & Energy Magazine - May/June 2015 - 31
IEEE Power & Energy Magazine - May/June 2015 - 32
IEEE Power & Energy Magazine - May/June 2015 - 33
IEEE Power & Energy Magazine - May/June 2015 - 34
IEEE Power & Energy Magazine - May/June 2015 - 35
IEEE Power & Energy Magazine - May/June 2015 - 36
IEEE Power & Energy Magazine - May/June 2015 - 37
IEEE Power & Energy Magazine - May/June 2015 - 38
IEEE Power & Energy Magazine - May/June 2015 - 39
IEEE Power & Energy Magazine - May/June 2015 - 40
IEEE Power & Energy Magazine - May/June 2015 - 41
IEEE Power & Energy Magazine - May/June 2015 - 42
IEEE Power & Energy Magazine - May/June 2015 - 43
IEEE Power & Energy Magazine - May/June 2015 - 44
IEEE Power & Energy Magazine - May/June 2015 - 45
IEEE Power & Energy Magazine - May/June 2015 - 46
IEEE Power & Energy Magazine - May/June 2015 - 47
IEEE Power & Energy Magazine - May/June 2015 - 48
IEEE Power & Energy Magazine - May/June 2015 - 49
IEEE Power & Energy Magazine - May/June 2015 - 50
IEEE Power & Energy Magazine - May/June 2015 - 51
IEEE Power & Energy Magazine - May/June 2015 - 52
IEEE Power & Energy Magazine - May/June 2015 - 53
IEEE Power & Energy Magazine - May/June 2015 - 54
IEEE Power & Energy Magazine - May/June 2015 - 55
IEEE Power & Energy Magazine - May/June 2015 - 56
IEEE Power & Energy Magazine - May/June 2015 - 57
IEEE Power & Energy Magazine - May/June 2015 - 58
IEEE Power & Energy Magazine - May/June 2015 - 59
IEEE Power & Energy Magazine - May/June 2015 - 60
IEEE Power & Energy Magazine - May/June 2015 - 61
IEEE Power & Energy Magazine - May/June 2015 - 62
IEEE Power & Energy Magazine - May/June 2015 - 63
IEEE Power & Energy Magazine - May/June 2015 - 64
IEEE Power & Energy Magazine - May/June 2015 - 65
IEEE Power & Energy Magazine - May/June 2015 - 66
IEEE Power & Energy Magazine - May/June 2015 - 67
IEEE Power & Energy Magazine - May/June 2015 - 68
IEEE Power & Energy Magazine - May/June 2015 - 69
IEEE Power & Energy Magazine - May/June 2015 - 70
IEEE Power & Energy Magazine - May/June 2015 - 71
IEEE Power & Energy Magazine - May/June 2015 - 72
IEEE Power & Energy Magazine - May/June 2015 - 73
IEEE Power & Energy Magazine - May/June 2015 - 74
IEEE Power & Energy Magazine - May/June 2015 - 75
IEEE Power & Energy Magazine - May/June 2015 - 76
IEEE Power & Energy Magazine - May/June 2015 - 77
IEEE Power & Energy Magazine - May/June 2015 - 78
IEEE Power & Energy Magazine - May/June 2015 - 79
IEEE Power & Energy Magazine - May/June 2015 - 80
IEEE Power & Energy Magazine - May/June 2015 - 81
IEEE Power & Energy Magazine - May/June 2015 - 82
IEEE Power & Energy Magazine - May/June 2015 - 83
IEEE Power & Energy Magazine - May/June 2015 - 84
IEEE Power & Energy Magazine - May/June 2015 - 85
IEEE Power & Energy Magazine - May/June 2015 - 86
IEEE Power & Energy Magazine - May/June 2015 - 87
IEEE Power & Energy Magazine - May/June 2015 - 88
IEEE Power & Energy Magazine - May/June 2015 - 89
IEEE Power & Energy Magazine - May/June 2015 - 90
IEEE Power & Energy Magazine - May/June 2015 - 91
IEEE Power & Energy Magazine - May/June 2015 - 92
IEEE Power & Energy Magazine - May/June 2015 - 93
IEEE Power & Energy Magazine - May/June 2015 - 94
IEEE Power & Energy Magazine - May/June 2015 - 95
IEEE Power & Energy Magazine - May/June 2015 - 96
IEEE Power & Energy Magazine - May/June 2015 - Cover3
IEEE Power & Energy Magazine - May/June 2015 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com