IEEE Power & Energy Magazine - May/June 2019 - 64

figure 3. A photo of a 765-kV double-circuit line in Korea. (Photo courtesy of KEPCO.)

equipment in response to a contingency. however, this proj-
ect also utilizes an overload capability for the hVdc system
in coordination with controls of flexible alternating current
transmission system (fACts) to minimize generation rejec-
tion. Critical contingencies accelerate generators in the east,
but they remain stable when hVdc transfers west are sud-
denly ramped up, which provides a cost-effective solution for
these rare system events. ramping the hVdc up also relieves
potential thermal overloads of other transmission facilities.
the plan still requires sps actions to reconfigure the ac trans-
mission system, reject some generation, and provide reactive
power support.

Combined LCC-HVdc
and FACTS Feasibility Study
the study of this hVdc project began in 2013 with a con-
ventional feasibility study to estimate its size and termi-
nal locations. the short circuit ratio (scr) and effective scr
(escr) provide critical indices used to compare the strength
of an ac system with acceptable hVdc expansion options.
the short circuit levels and scr were examined for the most
severe transmission outages for base case conditions with
up to two generators normally out of service.
Analysis using a transient stability analysis (tsA) tool
evaluated numerous credible operating scenarios to identify
the optimal connection points for the hVdc stations. five
locations on the 765-kV transmission lines were identified
and simulated as the worst-case three-phase bus faults in
the studies. however, kepCo engineers performed tsA of
all credible contingencies throughout the system and par-
ticularly at the hVdc terminals. All results for a given plan
must be stable to fulfill the intended role of the hVdc that
64

ieee power & energy magazine

supports continuous power delivery, even if there is a three-
phase fault on the double-circuit 765-kV transmission lines.
however, this lCC-hVdc project needs more than the
conventional approach normally used for planning hVdc
facilities. to meet the high degree of accuracy required for
studying the complex power system in the republic of korea,
additional modeling, tools, studies, and analyses for this spe-
cific project were performed as follows:
✔ a maximum power curve analysis with stAtCom
(mpCws) for examining the initial overloading ca-
pability of hVdc based on different system strengths
✔ an equal area criterion (eAC) analysis for estimating
the initial overloading amount of hVdc
✔ a feasibility study of a proposed tCsC with over-
load capability
✔ a feasibility study of a stAtCom to support the hVdc
✔ a tsA using an advanced hVdc model
✔ an analysis to determine the hVdc ramping rates for
automatic operation and scheduling changes
✔ an electromagnetic transient (emt) simulation analy-
sis, including detailed models of the hVdc and fACts.
Analyses based on the eAC with hVdc and mpCws turn
out to be useful for analyzing the initial required overload-
ing capability of the hVdc before refining the amounts using
tsA analysis. Both analyses are different from conventional
approaches because they can provide initial parameters for the
detailed study. the eAC analysis with hVdc can provide an
initial overloading amount for the hVdc, which makes it pos-
sible to manage the deceleration of generators near the rec-
tifier side of the hVdc. this analysis can estimate the level
of overloading amount that secures enough stability margin
so that the number of generators required to trip by sps can
may/june 2019



IEEE Power & Energy Magazine - May/June 2019

Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - May/June 2019

Contents
IEEE Power & Energy Magazine - May/June 2019 - Cover1
IEEE Power & Energy Magazine - May/June 2019 - Cover2
IEEE Power & Energy Magazine - May/June 2019 - Contents
IEEE Power & Energy Magazine - May/June 2019 - 2
IEEE Power & Energy Magazine - May/June 2019 - 3
IEEE Power & Energy Magazine - May/June 2019 - 4
IEEE Power & Energy Magazine - May/June 2019 - 5
IEEE Power & Energy Magazine - May/June 2019 - 6
IEEE Power & Energy Magazine - May/June 2019 - 7
IEEE Power & Energy Magazine - May/June 2019 - 8
IEEE Power & Energy Magazine - May/June 2019 - 9
IEEE Power & Energy Magazine - May/June 2019 - 10
IEEE Power & Energy Magazine - May/June 2019 - 11
IEEE Power & Energy Magazine - May/June 2019 - 12
IEEE Power & Energy Magazine - May/June 2019 - 13
IEEE Power & Energy Magazine - May/June 2019 - 14
IEEE Power & Energy Magazine - May/June 2019 - 15
IEEE Power & Energy Magazine - May/June 2019 - 16
IEEE Power & Energy Magazine - May/June 2019 - 17
IEEE Power & Energy Magazine - May/June 2019 - 18
IEEE Power & Energy Magazine - May/June 2019 - 19
IEEE Power & Energy Magazine - May/June 2019 - 20
IEEE Power & Energy Magazine - May/June 2019 - 21
IEEE Power & Energy Magazine - May/June 2019 - 22
IEEE Power & Energy Magazine - May/June 2019 - 23
IEEE Power & Energy Magazine - May/June 2019 - 24
IEEE Power & Energy Magazine - May/June 2019 - 25
IEEE Power & Energy Magazine - May/June 2019 - 26
IEEE Power & Energy Magazine - May/June 2019 - 27
IEEE Power & Energy Magazine - May/June 2019 - 28
IEEE Power & Energy Magazine - May/June 2019 - 29
IEEE Power & Energy Magazine - May/June 2019 - 30
IEEE Power & Energy Magazine - May/June 2019 - 31
IEEE Power & Energy Magazine - May/June 2019 - 32
IEEE Power & Energy Magazine - May/June 2019 - 33
IEEE Power & Energy Magazine - May/June 2019 - 34
IEEE Power & Energy Magazine - May/June 2019 - 35
IEEE Power & Energy Magazine - May/June 2019 - 36
IEEE Power & Energy Magazine - May/June 2019 - 37
IEEE Power & Energy Magazine - May/June 2019 - 38
IEEE Power & Energy Magazine - May/June 2019 - 39
IEEE Power & Energy Magazine - May/June 2019 - 40
IEEE Power & Energy Magazine - May/June 2019 - 41
IEEE Power & Energy Magazine - May/June 2019 - 42
IEEE Power & Energy Magazine - May/June 2019 - 43
IEEE Power & Energy Magazine - May/June 2019 - 44
IEEE Power & Energy Magazine - May/June 2019 - 45
IEEE Power & Energy Magazine - May/June 2019 - 46
IEEE Power & Energy Magazine - May/June 2019 - 47
IEEE Power & Energy Magazine - May/June 2019 - 48
IEEE Power & Energy Magazine - May/June 2019 - 49
IEEE Power & Energy Magazine - May/June 2019 - 50
IEEE Power & Energy Magazine - May/June 2019 - 51
IEEE Power & Energy Magazine - May/June 2019 - 52
IEEE Power & Energy Magazine - May/June 2019 - 53
IEEE Power & Energy Magazine - May/June 2019 - 54
IEEE Power & Energy Magazine - May/June 2019 - 55
IEEE Power & Energy Magazine - May/June 2019 - 56
IEEE Power & Energy Magazine - May/June 2019 - 57
IEEE Power & Energy Magazine - May/June 2019 - 58
IEEE Power & Energy Magazine - May/June 2019 - 59
IEEE Power & Energy Magazine - May/June 2019 - 60
IEEE Power & Energy Magazine - May/June 2019 - 61
IEEE Power & Energy Magazine - May/June 2019 - 62
IEEE Power & Energy Magazine - May/June 2019 - 63
IEEE Power & Energy Magazine - May/June 2019 - 64
IEEE Power & Energy Magazine - May/June 2019 - 65
IEEE Power & Energy Magazine - May/June 2019 - 66
IEEE Power & Energy Magazine - May/June 2019 - 67
IEEE Power & Energy Magazine - May/June 2019 - 68
IEEE Power & Energy Magazine - May/June 2019 - 69
IEEE Power & Energy Magazine - May/June 2019 - 70
IEEE Power & Energy Magazine - May/June 2019 - 71
IEEE Power & Energy Magazine - May/June 2019 - 72
IEEE Power & Energy Magazine - May/June 2019 - 73
IEEE Power & Energy Magazine - May/June 2019 - 74
IEEE Power & Energy Magazine - May/June 2019 - 75
IEEE Power & Energy Magazine - May/June 2019 - 76
IEEE Power & Energy Magazine - May/June 2019 - 77
IEEE Power & Energy Magazine - May/June 2019 - 78
IEEE Power & Energy Magazine - May/June 2019 - 79
IEEE Power & Energy Magazine - May/June 2019 - 80
IEEE Power & Energy Magazine - May/June 2019 - 81
IEEE Power & Energy Magazine - May/June 2019 - 82
IEEE Power & Energy Magazine - May/June 2019 - 83
IEEE Power & Energy Magazine - May/June 2019 - 84
IEEE Power & Energy Magazine - May/June 2019 - 85
IEEE Power & Energy Magazine - May/June 2019 - 86
IEEE Power & Energy Magazine - May/June 2019 - 87
IEEE Power & Energy Magazine - May/June 2019 - 88
IEEE Power & Energy Magazine - May/June 2019 - 89
IEEE Power & Energy Magazine - May/June 2019 - 90
IEEE Power & Energy Magazine - May/June 2019 - 91
IEEE Power & Energy Magazine - May/June 2019 - 92
IEEE Power & Energy Magazine - May/June 2019 - 93
IEEE Power & Energy Magazine - May/June 2019 - 94
IEEE Power & Energy Magazine - May/June 2019 - 95
IEEE Power & Energy Magazine - May/June 2019 - 96
IEEE Power & Energy Magazine - May/June 2019 - 97
IEEE Power & Energy Magazine - May/June 2019 - 98
IEEE Power & Energy Magazine - May/June 2019 - 99
IEEE Power & Energy Magazine - May/June 2019 - 100
IEEE Power & Energy Magazine - May/June 2019 - 101
IEEE Power & Energy Magazine - May/June 2019 - 102
IEEE Power & Energy Magazine - May/June 2019 - 103
IEEE Power & Energy Magazine - May/June 2019 - 104
IEEE Power & Energy Magazine - May/June 2019 - 105
IEEE Power & Energy Magazine - May/June 2019 - 106
IEEE Power & Energy Magazine - May/June 2019 - 107
IEEE Power & Energy Magazine - May/June 2019 - 108
IEEE Power & Energy Magazine - May/June 2019 - 109
IEEE Power & Energy Magazine - May/June 2019 - 110
IEEE Power & Energy Magazine - May/June 2019 - 111
IEEE Power & Energy Magazine - May/June 2019 - 112
IEEE Power & Energy Magazine - May/June 2019 - 113
IEEE Power & Energy Magazine - May/June 2019 - 114
IEEE Power & Energy Magazine - May/June 2019 - 115
IEEE Power & Energy Magazine - May/June 2019 - 116
IEEE Power & Energy Magazine - May/June 2019 - 117
IEEE Power & Energy Magazine - May/June 2019 - 118
IEEE Power & Energy Magazine - May/June 2019 - 119
IEEE Power & Energy Magazine - May/June 2019 - 120
IEEE Power & Energy Magazine - May/June 2019 - Cover3
IEEE Power & Energy Magazine - May/June 2019 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070821
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050621
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030421
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010221
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com