IEEE Power & Energy Magazine - July/August 2014 - 64

The tariff design process should take into account the socioeconomic background of the community-in other words,
whether it has sufficient economic capacity. special guidance
and training should be provided to help the community look
for alternative funding sources (e.g., microcredits, government programs, or cooperation agencies).

North
15
Northern Central
42

A Social SCADA System
Central
3

South
10

Far South
9

figure 3. The number of feasible isolated microgrid opportunities for the Chilean case.

(participation) aspects to monitor the microgrid's performance.
These indicators are based on general issues (i.e., community organization and decision-making processes) as well as
community priorities and reflect changes in technical, social,
economic, and environmental issues that are relevant to the
community and the project.
The maintenance costs in microgrids are low compared
with the investment cost but need to be covered by some
entity. This entity should ideally be the community but could
also be local government or some other institution. in most
cases, the system's financial structure is based on defining tariffs that may be able to cover maintenance and operation costs.

The social component is built from an initial description of
the community in terms of social interactions and the use
of land that identifies the relevant local stakeholders and the
willingness of the local population to participate in the project. The social component facilitates community participation in the decision-making process for the development of
the energy system.
To implement a social sCada system, the community needs to evolve from a conventional sCada system
to a system characterized by being small in scale, locally
appropriate, environmentally and socially sustainable, and
focused on benefits to the community. social sCada contributes to achieve a more resilient community, which means
an increased capacity of adaptation to changes over time using
local resources.
The Microgrid Component

Reliable and Economical
Stand-Alone Mode
Operation

Market Models
→ Investment
Incentives

Technical
Challenges

Plug-and-Play Feature
→ Seamless
Integration
Protection Schemes →
Bidirectional Power
Flows

figure 4. Microgrid challenges.
ieee power & energy magazine

The Social Component

Dispatch +
Reserves =
f (Uncertainty)

DSM
→ Customer Reaction
= f (Grid Needs)

64

The traditional supervisory control and data acquisition
(sCada) system is based on gathering, processing, and analyzing real-time data from the field. it requires highly trained
personnel for its operation and control through a humanmachine interface (hmi). By contrast, a "social sCada"
system uses a simplified hmi to facilitate the exchange of
information between the microgrid system and the community. Under this system, the operators need only basic training to interact with the electricity system. figure 6 depicts the
social sCada concept as the sum of the social component
(i.e., the community) and traditional sCada applications.

Voltage and
Frequency Control
Techniques → Power
Electronics
Community
Engagement Tools

another necessary step for implementation of a social sCada system is the characterization of the
microgrid. The main aspects to
consider are:
✔  p
  rimary resources for electricity generation (i.e., solar
radiation, wind, water, biomass, and/or fossil fuels)
✔   generation unit technologies
✔   power and communication
networks
✔  electricity consumption
✔   operation, monitoring, and
control systems (local and
remote).
july/august 2014



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2014

IEEE Power & Energy Magazine - July/August 2014 - Cover1
IEEE Power & Energy Magazine - July/August 2014 - Cover2
IEEE Power & Energy Magazine - July/August 2014 - 1
IEEE Power & Energy Magazine - July/August 2014 - 2
IEEE Power & Energy Magazine - July/August 2014 - 3
IEEE Power & Energy Magazine - July/August 2014 - 4
IEEE Power & Energy Magazine - July/August 2014 - 5
IEEE Power & Energy Magazine - July/August 2014 - 6
IEEE Power & Energy Magazine - July/August 2014 - 7
IEEE Power & Energy Magazine - July/August 2014 - 8
IEEE Power & Energy Magazine - July/August 2014 - 9
IEEE Power & Energy Magazine - July/August 2014 - 10
IEEE Power & Energy Magazine - July/August 2014 - 11
IEEE Power & Energy Magazine - July/August 2014 - 12
IEEE Power & Energy Magazine - July/August 2014 - 13
IEEE Power & Energy Magazine - July/August 2014 - 14
IEEE Power & Energy Magazine - July/August 2014 - 15
IEEE Power & Energy Magazine - July/August 2014 - 16
IEEE Power & Energy Magazine - July/August 2014 - 17
IEEE Power & Energy Magazine - July/August 2014 - 18
IEEE Power & Energy Magazine - July/August 2014 - 19
IEEE Power & Energy Magazine - July/August 2014 - 20
IEEE Power & Energy Magazine - July/August 2014 - 21
IEEE Power & Energy Magazine - July/August 2014 - 22
IEEE Power & Energy Magazine - July/August 2014 - 23
IEEE Power & Energy Magazine - July/August 2014 - 24
IEEE Power & Energy Magazine - July/August 2014 - 25
IEEE Power & Energy Magazine - July/August 2014 - 26
IEEE Power & Energy Magazine - July/August 2014 - 27
IEEE Power & Energy Magazine - July/August 2014 - 28
IEEE Power & Energy Magazine - July/August 2014 - 29
IEEE Power & Energy Magazine - July/August 2014 - 30
IEEE Power & Energy Magazine - July/August 2014 - 31
IEEE Power & Energy Magazine - July/August 2014 - 32
IEEE Power & Energy Magazine - July/August 2014 - 33
IEEE Power & Energy Magazine - July/August 2014 - 34
IEEE Power & Energy Magazine - July/August 2014 - 35
IEEE Power & Energy Magazine - July/August 2014 - 36
IEEE Power & Energy Magazine - July/August 2014 - 37
IEEE Power & Energy Magazine - July/August 2014 - 38
IEEE Power & Energy Magazine - July/August 2014 - 39
IEEE Power & Energy Magazine - July/August 2014 - 40
IEEE Power & Energy Magazine - July/August 2014 - 41
IEEE Power & Energy Magazine - July/August 2014 - 42
IEEE Power & Energy Magazine - July/August 2014 - 43
IEEE Power & Energy Magazine - July/August 2014 - 44
IEEE Power & Energy Magazine - July/August 2014 - 45
IEEE Power & Energy Magazine - July/August 2014 - 46
IEEE Power & Energy Magazine - July/August 2014 - 47
IEEE Power & Energy Magazine - July/August 2014 - 48
IEEE Power & Energy Magazine - July/August 2014 - 49
IEEE Power & Energy Magazine - July/August 2014 - 50
IEEE Power & Energy Magazine - July/August 2014 - 51
IEEE Power & Energy Magazine - July/August 2014 - 52
IEEE Power & Energy Magazine - July/August 2014 - 53
IEEE Power & Energy Magazine - July/August 2014 - 54
IEEE Power & Energy Magazine - July/August 2014 - 55
IEEE Power & Energy Magazine - July/August 2014 - 56
IEEE Power & Energy Magazine - July/August 2014 - 57
IEEE Power & Energy Magazine - July/August 2014 - 58
IEEE Power & Energy Magazine - July/August 2014 - 59
IEEE Power & Energy Magazine - July/August 2014 - 60
IEEE Power & Energy Magazine - July/August 2014 - 61
IEEE Power & Energy Magazine - July/August 2014 - 62
IEEE Power & Energy Magazine - July/August 2014 - 63
IEEE Power & Energy Magazine - July/August 2014 - 64
IEEE Power & Energy Magazine - July/August 2014 - 65
IEEE Power & Energy Magazine - July/August 2014 - 66
IEEE Power & Energy Magazine - July/August 2014 - 67
IEEE Power & Energy Magazine - July/August 2014 - 68
IEEE Power & Energy Magazine - July/August 2014 - 69
IEEE Power & Energy Magazine - July/August 2014 - 70
IEEE Power & Energy Magazine - July/August 2014 - 71
IEEE Power & Energy Magazine - July/August 2014 - 72
IEEE Power & Energy Magazine - July/August 2014 - 73
IEEE Power & Energy Magazine - July/August 2014 - 74
IEEE Power & Energy Magazine - July/August 2014 - 75
IEEE Power & Energy Magazine - July/August 2014 - 76
IEEE Power & Energy Magazine - July/August 2014 - 77
IEEE Power & Energy Magazine - July/August 2014 - 78
IEEE Power & Energy Magazine - July/August 2014 - 79
IEEE Power & Energy Magazine - July/August 2014 - 80
IEEE Power & Energy Magazine - July/August 2014 - 81
IEEE Power & Energy Magazine - July/August 2014 - 82
IEEE Power & Energy Magazine - July/August 2014 - 83
IEEE Power & Energy Magazine - July/August 2014 - 84
IEEE Power & Energy Magazine - July/August 2014 - 85
IEEE Power & Energy Magazine - July/August 2014 - 86
IEEE Power & Energy Magazine - July/August 2014 - 87
IEEE Power & Energy Magazine - July/August 2014 - 88
IEEE Power & Energy Magazine - July/August 2014 - 89
IEEE Power & Energy Magazine - July/August 2014 - 90
IEEE Power & Energy Magazine - July/August 2014 - 91
IEEE Power & Energy Magazine - July/August 2014 - 92
IEEE Power & Energy Magazine - July/August 2014 - 93
IEEE Power & Energy Magazine - July/August 2014 - 94
IEEE Power & Energy Magazine - July/August 2014 - 95
IEEE Power & Energy Magazine - July/August 2014 - 96
IEEE Power & Energy Magazine - July/August 2014 - Cover3
IEEE Power & Energy Magazine - July/August 2014 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050621
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030421
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010221
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com