IEEE Power & Energy Magazine - July/August 2018 - 56

result of a successful smart meter rollout and partly as a necessary means to keep peak demand down. a smart charger,
at its most basic level, is a device that is programmable and
has a two-way communication facility.
it is envisaged that these devices will be able to carry out
functionality such as
✔ responding to dynamic pricing signals
✔ integration into a domestic electricity niche, being
able to "understand" all the demands and generation
of a household, rank the eV's capabilities in an order
of merit, and respond appropriately to maximize the
eV's potential
✔ integration, both as an input and an output, into the
wider electricity ecology, whether through a local, regional, or virtual community
✔ predictive learning of what demand is required, thereby ensuring the eV battery is used in the most optimal
manner for the consumer
✔ over r ide facilities to let consumers opt out of
functionalities.
at a bare minimum, we firmly believe that smart chargers must be able to facilitate and enable consumers to move
away from peak-time charging. if this is not achieved, then
the stresses on the electricity networks will be significant,
incurring substantial network reinforcement and incremental generation capacity. in two degrees, smart charging
mitigates these stresses, resulting in only about 6 gW of
incremental peak demand by 2030, an additional 10% above
today's peak.

What Could This Look Like?
Figure 7 illustrates the annual and peak demand required
by eVs (and heat pumps) from today to 2050. in 2050, with
about 25 million eVs on the road and assuming an average
power rating of a modest 30 kW, there is 750 gW of potential capacity. if only a fraction of this could be harnessed as
a balancing resource, the eV fleet could contribute significantly toward managing a system dominated by large-scale
intermittent renewable generation.
Using eVs for more than just powering a vehicle is beginning to be explored. in denmark, a vehicle-to-grid (V2g)
trial has already been set up, generating up to €1,400 per car
per year by entering the ancillary services market. V2g is a
rapidly developing area, and there are a number of research
projects being conducted on future opportunities. innovation
United Kingdom has recently awarded almost £6 million to
the "e4Future" V2g demonstration project. this project has
been proposed by a consortium of seven interested parties,
including national grid, with nissan as the project lead. it
aims to demonstrate the possibilities that can be accrued,
as well technical characteristics and power system impacts,
from 1,000 V2g installations.
Less well developed is the concept of aggregating eVs
so that they could act as a virtual power station. this would
mean that, rather than offering only ancillary services, they
56

ieee power & energy magazine

would be able to offer balancing services, particularly at
peak demand and times of low renewable generation.
Some level of distribution reinforcement will likely be
required. recent pilot projects such as my electric avenue
have identified potential issues with scaling up charging at
the distribution level. in one example, voltage issues were
identified when five 3.5-kW chargers connected to a network
cluster (with 134 dwellings) were charging at the same time.
the project concluded that across Britain, 32% of low-voltage circuits (312,000) will require reinforcing when 40-70%
of customers have eVs using 3.5-kW chargers.

Summary
across the two degrees scenario, significant interventions
will be required to transform not only the power sector but
also adoption trends in both the transport and building markets. today, 30% of all natural gas consumed in the United
Kingdom is for power generation. the decarbonization of
power is significantly advanced, and a number of renewable
energy milestones have been reached.
heating is the least developed in its progress toward decarbonization. Currently, 80% of U.K. homes rely on gas for
heating, and this figure has changed little in recent years. it
accounts for about one-third of natural gas usage in the United
Kingdom. natural gas is still the preferred choice of consumers. however, for the 2050 target to be met, a majority of heating must be electrified and the housing stock will require significant (30%) thermal efficiency improvement.
the electrification of transport is still in its infancy,
although the price of batteries has been dropping and will
act as a spur. the recent government ambition to end the sale
of conventional petrol and diesel cars and vans by 2040 will
focus minds on the need for accelerated vehicle adoption and
required infrastructure development.

Network and Operability Considerations
the FES analysis does not look at network requirements for
its scenarios-it takes an unconstrained view. however, if
two degrees is to become a reality, there are a number of
challenges to be addressed.
✔ renewable generation is mostly intermittent, so alternative sources of generation may need to be in place.
What is the most cost-effective means to achieve this?
✔ Some renewable sources do not produce reactive
power, so compensation must be available. What will
these look like, and where will they be situated?
✔ there is a geographical shift in the sources of generation and demand that will require network investment.
how can this be done, and how can we mitigate the
risk of creating stranded assets?
✔ Peak loads could increase as a result of the new loads.
how can the adoption and use of smart appliances
be normalized?
✔ Will the current distribution system be fit for purpose in a
world where eVs and electrified heating are the norm?
july/august 2018



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2018

Contents
IEEE Power & Energy Magazine - July/August 2018 - Cover1
IEEE Power & Energy Magazine - July/August 2018 - Cover2
IEEE Power & Energy Magazine - July/August 2018 - Contents
IEEE Power & Energy Magazine - July/August 2018 - 2
IEEE Power & Energy Magazine - July/August 2018 - 3
IEEE Power & Energy Magazine - July/August 2018 - 4
IEEE Power & Energy Magazine - July/August 2018 - 5
IEEE Power & Energy Magazine - July/August 2018 - 6
IEEE Power & Energy Magazine - July/August 2018 - 7
IEEE Power & Energy Magazine - July/August 2018 - 8
IEEE Power & Energy Magazine - July/August 2018 - 9
IEEE Power & Energy Magazine - July/August 2018 - 10
IEEE Power & Energy Magazine - July/August 2018 - 11
IEEE Power & Energy Magazine - July/August 2018 - 12
IEEE Power & Energy Magazine - July/August 2018 - 13
IEEE Power & Energy Magazine - July/August 2018 - 14
IEEE Power & Energy Magazine - July/August 2018 - 15
IEEE Power & Energy Magazine - July/August 2018 - 16
IEEE Power & Energy Magazine - July/August 2018 - 17
IEEE Power & Energy Magazine - July/August 2018 - 18
IEEE Power & Energy Magazine - July/August 2018 - 19
IEEE Power & Energy Magazine - July/August 2018 - 20
IEEE Power & Energy Magazine - July/August 2018 - 21
IEEE Power & Energy Magazine - July/August 2018 - 22
IEEE Power & Energy Magazine - July/August 2018 - 23
IEEE Power & Energy Magazine - July/August 2018 - 24
IEEE Power & Energy Magazine - July/August 2018 - 25
IEEE Power & Energy Magazine - July/August 2018 - 26
IEEE Power & Energy Magazine - July/August 2018 - 27
IEEE Power & Energy Magazine - July/August 2018 - 28
IEEE Power & Energy Magazine - July/August 2018 - 29
IEEE Power & Energy Magazine - July/August 2018 - 30
IEEE Power & Energy Magazine - July/August 2018 - 31
IEEE Power & Energy Magazine - July/August 2018 - 32
IEEE Power & Energy Magazine - July/August 2018 - 33
IEEE Power & Energy Magazine - July/August 2018 - 34
IEEE Power & Energy Magazine - July/August 2018 - 35
IEEE Power & Energy Magazine - July/August 2018 - 36
IEEE Power & Energy Magazine - July/August 2018 - 37
IEEE Power & Energy Magazine - July/August 2018 - 38
IEEE Power & Energy Magazine - July/August 2018 - 39
IEEE Power & Energy Magazine - July/August 2018 - 40
IEEE Power & Energy Magazine - July/August 2018 - 41
IEEE Power & Energy Magazine - July/August 2018 - 42
IEEE Power & Energy Magazine - July/August 2018 - 43
IEEE Power & Energy Magazine - July/August 2018 - 44
IEEE Power & Energy Magazine - July/August 2018 - 45
IEEE Power & Energy Magazine - July/August 2018 - 46
IEEE Power & Energy Magazine - July/August 2018 - 47
IEEE Power & Energy Magazine - July/August 2018 - 48
IEEE Power & Energy Magazine - July/August 2018 - 49
IEEE Power & Energy Magazine - July/August 2018 - 50
IEEE Power & Energy Magazine - July/August 2018 - 51
IEEE Power & Energy Magazine - July/August 2018 - 52
IEEE Power & Energy Magazine - July/August 2018 - 53
IEEE Power & Energy Magazine - July/August 2018 - 54
IEEE Power & Energy Magazine - July/August 2018 - 55
IEEE Power & Energy Magazine - July/August 2018 - 56
IEEE Power & Energy Magazine - July/August 2018 - 57
IEEE Power & Energy Magazine - July/August 2018 - 58
IEEE Power & Energy Magazine - July/August 2018 - 59
IEEE Power & Energy Magazine - July/August 2018 - 60
IEEE Power & Energy Magazine - July/August 2018 - 61
IEEE Power & Energy Magazine - July/August 2018 - 62
IEEE Power & Energy Magazine - July/August 2018 - 63
IEEE Power & Energy Magazine - July/August 2018 - 64
IEEE Power & Energy Magazine - July/August 2018 - 65
IEEE Power & Energy Magazine - July/August 2018 - 66
IEEE Power & Energy Magazine - July/August 2018 - 67
IEEE Power & Energy Magazine - July/August 2018 - 68
IEEE Power & Energy Magazine - July/August 2018 - 69
IEEE Power & Energy Magazine - July/August 2018 - 70
IEEE Power & Energy Magazine - July/August 2018 - 71
IEEE Power & Energy Magazine - July/August 2018 - 72
IEEE Power & Energy Magazine - July/August 2018 - 73
IEEE Power & Energy Magazine - July/August 2018 - 74
IEEE Power & Energy Magazine - July/August 2018 - 75
IEEE Power & Energy Magazine - July/August 2018 - 76
IEEE Power & Energy Magazine - July/August 2018 - 77
IEEE Power & Energy Magazine - July/August 2018 - 78
IEEE Power & Energy Magazine - July/August 2018 - 79
IEEE Power & Energy Magazine - July/August 2018 - 80
IEEE Power & Energy Magazine - July/August 2018 - 81
IEEE Power & Energy Magazine - July/August 2018 - 82
IEEE Power & Energy Magazine - July/August 2018 - 83
IEEE Power & Energy Magazine - July/August 2018 - 84
IEEE Power & Energy Magazine - July/August 2018 - 85
IEEE Power & Energy Magazine - July/August 2018 - 86
IEEE Power & Energy Magazine - July/August 2018 - 87
IEEE Power & Energy Magazine - July/August 2018 - 88
IEEE Power & Energy Magazine - July/August 2018 - 89
IEEE Power & Energy Magazine - July/August 2018 - 90
IEEE Power & Energy Magazine - July/August 2018 - 91
IEEE Power & Energy Magazine - July/August 2018 - 92
IEEE Power & Energy Magazine - July/August 2018 - 93
IEEE Power & Energy Magazine - July/August 2018 - 94
IEEE Power & Energy Magazine - July/August 2018 - 95
IEEE Power & Energy Magazine - July/August 2018 - 96
IEEE Power & Energy Magazine - July/August 2018 - 97
IEEE Power & Energy Magazine - July/August 2018 - 98
IEEE Power & Energy Magazine - July/August 2018 - 99
IEEE Power & Energy Magazine - July/August 2018 - 100
IEEE Power & Energy Magazine - July/August 2018 - 101
IEEE Power & Energy Magazine - July/August 2018 - 102
IEEE Power & Energy Magazine - July/August 2018 - 103
IEEE Power & Energy Magazine - July/August 2018 - 104
IEEE Power & Energy Magazine - July/August 2018 - 105
IEEE Power & Energy Magazine - July/August 2018 - 106
IEEE Power & Energy Magazine - July/August 2018 - 107
IEEE Power & Energy Magazine - July/August 2018 - 108
IEEE Power & Energy Magazine - July/August 2018 - 109
IEEE Power & Energy Magazine - July/August 2018 - 110
IEEE Power & Energy Magazine - July/August 2018 - 111
IEEE Power & Energy Magazine - July/August 2018 - 112
IEEE Power & Energy Magazine - July/August 2018 - 113
IEEE Power & Energy Magazine - July/August 2018 - 114
IEEE Power & Energy Magazine - July/August 2018 - 115
IEEE Power & Energy Magazine - July/August 2018 - 116
IEEE Power & Energy Magazine - July/August 2018 - 117
IEEE Power & Energy Magazine - July/August 2018 - 118
IEEE Power & Energy Magazine - July/August 2018 - 119
IEEE Power & Energy Magazine - July/August 2018 - 120
IEEE Power & Energy Magazine - July/August 2018 - 121
IEEE Power & Energy Magazine - July/August 2018 - 122
IEEE Power & Energy Magazine - July/August 2018 - 123
IEEE Power & Energy Magazine - July/August 2018 - 124
IEEE Power & Energy Magazine - July/August 2018 - 125
IEEE Power & Energy Magazine - July/August 2018 - 126
IEEE Power & Energy Magazine - July/August 2018 - 127
IEEE Power & Energy Magazine - July/August 2018 - 128
IEEE Power & Energy Magazine - July/August 2018 - 129
IEEE Power & Energy Magazine - July/August 2018 - 130
IEEE Power & Energy Magazine - July/August 2018 - 131
IEEE Power & Energy Magazine - July/August 2018 - 132
IEEE Power & Energy Magazine - July/August 2018 - Cover3
IEEE Power & Energy Magazine - July/August 2018 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com