IEEE Power & Energy Magazine - July/August 2018 - 87

as an operational tool to make sure sufficient resources are
available in energy markets to cover forecast errors or meet
expected and unexpected changes in net load or generation.
under this definition, most ancillary service products can be
categorized as near-term capacity markets.
in a highly electrified, highly variable electricity system,
all capacity markets will need to increase in sophistication.
ancillary service products must accommodate increased
forecast error, more extreme generator ramping, and certain
grid services provided today by conventional generation
but not replicated by renewables such as primary frequency
response. this is an area in which rtos have been active in
recent years, and much progress has been made.
the changes necessary for long-term capacity markets
are not as well understood, and debate still revolves around
exactly what capabilities are necessary for future capacity
and how much will be required. it is often assumed that a
combination of wind, solar and 6-24 h of energy storage
will be sufficient to create a reliable low-cost decarbonized electricity system, but this does not stand up to serious scrutiny.
to illustrate these concepts, a new type of screening
curve is presented here for systems with large amounts of
inflexible supply that demonstrates the capacity required
from balancing resources of different durations. figure 8
shows the residual capacity over the modeled year 2050 for
two cases, the u.s. department of Energy's 2017 annual

Energy outlook and the high-renewables scenario from
the u.s. ddpp. residual capacity is calculated as gross
load minus all zero-carbon resources (excluding bioenergy) and includes the impact of all flexible loads and energy storage.
this residual is instructive because it is the energy that must
be met with either thermal resources or a greater deployment
of the zero carbon resources already in the system. the key
question is what the characteristics for other resources must be
to replace thermal and reduce emissions or cost. this question
is approached by analyzing the residual capacity requirement
to understand the number of hours a given capacity must be
maintained to ensure a reliable system. this result is shown
in figure 9. in the high-renewables case, capacity resources
had to be able to provide at least 422 GW for 1 h, at least
376 GW for 10 h, and at least 141 GW for 100 h. the flatter
these screening curves, the higher the likely capacity factors
for residual resources, and the longer the duration, the more
difficult it is for energy-constrained balancing resources, such
as battery storage, to meet the need.
the most striking aspect of the curve is how little the
shape of the curve changes between the two cases. despite
huge quantities of renewable generation, residual capacity
needs with significant duration remain a necessity for reliable
system operation. one important caveat is that this screening curve does not consider the need for long-duration storage resources to charge as well as discharge. thus, a storage

Hour of the Year

Scenario

AEO 2017
Reference

Residual GWh

600

400

200

High
Renewables

Residual GWh

0
600

400

200

0

figure 8. The residual capacity need across simulated 2050 scenarios. Residual capacity is equal to total load minus all
zero-carbon resources, including nuclear and hydroelectricity. In the modeled scenarios, this residual was met with thermal resources.
july/august 2018

ieee power & energy magazine

87



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2018

Contents
IEEE Power & Energy Magazine - July/August 2018 - Cover1
IEEE Power & Energy Magazine - July/August 2018 - Cover2
IEEE Power & Energy Magazine - July/August 2018 - Contents
IEEE Power & Energy Magazine - July/August 2018 - 2
IEEE Power & Energy Magazine - July/August 2018 - 3
IEEE Power & Energy Magazine - July/August 2018 - 4
IEEE Power & Energy Magazine - July/August 2018 - 5
IEEE Power & Energy Magazine - July/August 2018 - 6
IEEE Power & Energy Magazine - July/August 2018 - 7
IEEE Power & Energy Magazine - July/August 2018 - 8
IEEE Power & Energy Magazine - July/August 2018 - 9
IEEE Power & Energy Magazine - July/August 2018 - 10
IEEE Power & Energy Magazine - July/August 2018 - 11
IEEE Power & Energy Magazine - July/August 2018 - 12
IEEE Power & Energy Magazine - July/August 2018 - 13
IEEE Power & Energy Magazine - July/August 2018 - 14
IEEE Power & Energy Magazine - July/August 2018 - 15
IEEE Power & Energy Magazine - July/August 2018 - 16
IEEE Power & Energy Magazine - July/August 2018 - 17
IEEE Power & Energy Magazine - July/August 2018 - 18
IEEE Power & Energy Magazine - July/August 2018 - 19
IEEE Power & Energy Magazine - July/August 2018 - 20
IEEE Power & Energy Magazine - July/August 2018 - 21
IEEE Power & Energy Magazine - July/August 2018 - 22
IEEE Power & Energy Magazine - July/August 2018 - 23
IEEE Power & Energy Magazine - July/August 2018 - 24
IEEE Power & Energy Magazine - July/August 2018 - 25
IEEE Power & Energy Magazine - July/August 2018 - 26
IEEE Power & Energy Magazine - July/August 2018 - 27
IEEE Power & Energy Magazine - July/August 2018 - 28
IEEE Power & Energy Magazine - July/August 2018 - 29
IEEE Power & Energy Magazine - July/August 2018 - 30
IEEE Power & Energy Magazine - July/August 2018 - 31
IEEE Power & Energy Magazine - July/August 2018 - 32
IEEE Power & Energy Magazine - July/August 2018 - 33
IEEE Power & Energy Magazine - July/August 2018 - 34
IEEE Power & Energy Magazine - July/August 2018 - 35
IEEE Power & Energy Magazine - July/August 2018 - 36
IEEE Power & Energy Magazine - July/August 2018 - 37
IEEE Power & Energy Magazine - July/August 2018 - 38
IEEE Power & Energy Magazine - July/August 2018 - 39
IEEE Power & Energy Magazine - July/August 2018 - 40
IEEE Power & Energy Magazine - July/August 2018 - 41
IEEE Power & Energy Magazine - July/August 2018 - 42
IEEE Power & Energy Magazine - July/August 2018 - 43
IEEE Power & Energy Magazine - July/August 2018 - 44
IEEE Power & Energy Magazine - July/August 2018 - 45
IEEE Power & Energy Magazine - July/August 2018 - 46
IEEE Power & Energy Magazine - July/August 2018 - 47
IEEE Power & Energy Magazine - July/August 2018 - 48
IEEE Power & Energy Magazine - July/August 2018 - 49
IEEE Power & Energy Magazine - July/August 2018 - 50
IEEE Power & Energy Magazine - July/August 2018 - 51
IEEE Power & Energy Magazine - July/August 2018 - 52
IEEE Power & Energy Magazine - July/August 2018 - 53
IEEE Power & Energy Magazine - July/August 2018 - 54
IEEE Power & Energy Magazine - July/August 2018 - 55
IEEE Power & Energy Magazine - July/August 2018 - 56
IEEE Power & Energy Magazine - July/August 2018 - 57
IEEE Power & Energy Magazine - July/August 2018 - 58
IEEE Power & Energy Magazine - July/August 2018 - 59
IEEE Power & Energy Magazine - July/August 2018 - 60
IEEE Power & Energy Magazine - July/August 2018 - 61
IEEE Power & Energy Magazine - July/August 2018 - 62
IEEE Power & Energy Magazine - July/August 2018 - 63
IEEE Power & Energy Magazine - July/August 2018 - 64
IEEE Power & Energy Magazine - July/August 2018 - 65
IEEE Power & Energy Magazine - July/August 2018 - 66
IEEE Power & Energy Magazine - July/August 2018 - 67
IEEE Power & Energy Magazine - July/August 2018 - 68
IEEE Power & Energy Magazine - July/August 2018 - 69
IEEE Power & Energy Magazine - July/August 2018 - 70
IEEE Power & Energy Magazine - July/August 2018 - 71
IEEE Power & Energy Magazine - July/August 2018 - 72
IEEE Power & Energy Magazine - July/August 2018 - 73
IEEE Power & Energy Magazine - July/August 2018 - 74
IEEE Power & Energy Magazine - July/August 2018 - 75
IEEE Power & Energy Magazine - July/August 2018 - 76
IEEE Power & Energy Magazine - July/August 2018 - 77
IEEE Power & Energy Magazine - July/August 2018 - 78
IEEE Power & Energy Magazine - July/August 2018 - 79
IEEE Power & Energy Magazine - July/August 2018 - 80
IEEE Power & Energy Magazine - July/August 2018 - 81
IEEE Power & Energy Magazine - July/August 2018 - 82
IEEE Power & Energy Magazine - July/August 2018 - 83
IEEE Power & Energy Magazine - July/August 2018 - 84
IEEE Power & Energy Magazine - July/August 2018 - 85
IEEE Power & Energy Magazine - July/August 2018 - 86
IEEE Power & Energy Magazine - July/August 2018 - 87
IEEE Power & Energy Magazine - July/August 2018 - 88
IEEE Power & Energy Magazine - July/August 2018 - 89
IEEE Power & Energy Magazine - July/August 2018 - 90
IEEE Power & Energy Magazine - July/August 2018 - 91
IEEE Power & Energy Magazine - July/August 2018 - 92
IEEE Power & Energy Magazine - July/August 2018 - 93
IEEE Power & Energy Magazine - July/August 2018 - 94
IEEE Power & Energy Magazine - July/August 2018 - 95
IEEE Power & Energy Magazine - July/August 2018 - 96
IEEE Power & Energy Magazine - July/August 2018 - 97
IEEE Power & Energy Magazine - July/August 2018 - 98
IEEE Power & Energy Magazine - July/August 2018 - 99
IEEE Power & Energy Magazine - July/August 2018 - 100
IEEE Power & Energy Magazine - July/August 2018 - 101
IEEE Power & Energy Magazine - July/August 2018 - 102
IEEE Power & Energy Magazine - July/August 2018 - 103
IEEE Power & Energy Magazine - July/August 2018 - 104
IEEE Power & Energy Magazine - July/August 2018 - 105
IEEE Power & Energy Magazine - July/August 2018 - 106
IEEE Power & Energy Magazine - July/August 2018 - 107
IEEE Power & Energy Magazine - July/August 2018 - 108
IEEE Power & Energy Magazine - July/August 2018 - 109
IEEE Power & Energy Magazine - July/August 2018 - 110
IEEE Power & Energy Magazine - July/August 2018 - 111
IEEE Power & Energy Magazine - July/August 2018 - 112
IEEE Power & Energy Magazine - July/August 2018 - 113
IEEE Power & Energy Magazine - July/August 2018 - 114
IEEE Power & Energy Magazine - July/August 2018 - 115
IEEE Power & Energy Magazine - July/August 2018 - 116
IEEE Power & Energy Magazine - July/August 2018 - 117
IEEE Power & Energy Magazine - July/August 2018 - 118
IEEE Power & Energy Magazine - July/August 2018 - 119
IEEE Power & Energy Magazine - July/August 2018 - 120
IEEE Power & Energy Magazine - July/August 2018 - 121
IEEE Power & Energy Magazine - July/August 2018 - 122
IEEE Power & Energy Magazine - July/August 2018 - 123
IEEE Power & Energy Magazine - July/August 2018 - 124
IEEE Power & Energy Magazine - July/August 2018 - 125
IEEE Power & Energy Magazine - July/August 2018 - 126
IEEE Power & Energy Magazine - July/August 2018 - 127
IEEE Power & Energy Magazine - July/August 2018 - 128
IEEE Power & Energy Magazine - July/August 2018 - 129
IEEE Power & Energy Magazine - July/August 2018 - 130
IEEE Power & Energy Magazine - July/August 2018 - 131
IEEE Power & Energy Magazine - July/August 2018 - 132
IEEE Power & Energy Magazine - July/August 2018 - Cover3
IEEE Power & Energy Magazine - July/August 2018 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com