IEEE Power & Energy Magazine - September/October 2014 - 71

Our analysis focused on surface winds and their impact
on storm surges and on precipitation and the associated flooding
throughout the region after landfall.

table 1. The WRF numerical experiment design (changes in air and soil temperature
and sea surface temperature are relative to the control simulation).
Numerical experiments

Air temperature

Initial and Boundary Conditions
Deep soil temperature
sea surface temperature

F2020: a climate-warming
scenario for 2020

+ 1 °C

+ 1 °C

+ 0.3 °C

+ 2 °C
+ 2 °C
+ 2 °C

+ 2 °C
+ 2 °C
+ 2 °C

+ 0.6 °C
+ 0.9 °C
+ 1.2 °C

+ 4 °C

+ 4 °C

+ 1.8 °C

F2050: three 2050
climate-warming
scenarios
F2090: a climate-warming
scenario for 2090

A
B
C

Understanding Superstorm Sandy
Through Weather Modeling
We used the advanced research version of the WRF model as
our primary atmospheric modeling tool. The WRF model was
developed jointly by NCAR, a number of government agencies, and the university research community. To conduct the
numerical studies of Superstorm Sandy, the WRF model was
configured as two nested domains: a coarse modeling domain
with 15-km horizontal grid spacing and a high-resolution
domain with 3-km grid spacing.
Two types of WRF simulations were performed. The first
was a simulation of Superstorm Sandy under current climatic
conditions (the control, or CNTL, simulation). The second
type consisted of scenario-based simulations of Superstorm
Sandy for future climatic conditions that included warmer
initial and boundary conditions. The first day of model simulation began at 18:00 UTC on 26 October 2012, and the final
time of simulation was at 00:00 UTC on 31 October 2012,
about 24 h after landfall in the United States.

Control Simulation
Figure 3 shows the control simulation storm track (green)
compared with the track from the National Hurricane Center
(NHC) observations (black). Although the WRF-predicted
location of Superstorm Sandy is slightly westward of its
actual track during the second intensification phase (the 12-h
period beginning at approximately 60 h into the forecast), the
overall evolution of the observed track-especially the timing
and location of landfall-was well reproduced by the WRF
model, as were the maximum surface-wind speed (about
september/october 2014

80 kn) and storm intensity as measured by surface pressure,
where a lower value reflects greater intensity (about 940 mb).

46 N

CNTL
F2020
F2050A
F2050B
F2050C
F2090

42 N

38 N

34 N

30 N

26 N

22 N

82 W

78 W

74 W

70 W

66 W

figure 5. A simulated Hurricane Sandy track in CNTL
(cyan), F2020 (purple), F2050A (gold), F2050B (red),
F2050C (blue), and F2090 (green) simulations. (Image used
with permission from NCAR.)
ieee power & energy magazine

71



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - September/October 2014

IEEE Power & Energy Magazine - September/October 2014 - Cover1
IEEE Power & Energy Magazine - September/October 2014 - Cover2
IEEE Power & Energy Magazine - September/October 2014 - 1
IEEE Power & Energy Magazine - September/October 2014 - 2
IEEE Power & Energy Magazine - September/October 2014 - 3
IEEE Power & Energy Magazine - September/October 2014 - 4
IEEE Power & Energy Magazine - September/October 2014 - 5
IEEE Power & Energy Magazine - September/October 2014 - 6
IEEE Power & Energy Magazine - September/October 2014 - 7
IEEE Power & Energy Magazine - September/October 2014 - 8
IEEE Power & Energy Magazine - September/October 2014 - 9
IEEE Power & Energy Magazine - September/October 2014 - 10
IEEE Power & Energy Magazine - September/October 2014 - 11
IEEE Power & Energy Magazine - September/October 2014 - 12
IEEE Power & Energy Magazine - September/October 2014 - 13
IEEE Power & Energy Magazine - September/October 2014 - 14
IEEE Power & Energy Magazine - September/October 2014 - 15
IEEE Power & Energy Magazine - September/October 2014 - 16
IEEE Power & Energy Magazine - September/October 2014 - 17
IEEE Power & Energy Magazine - September/October 2014 - 18
IEEE Power & Energy Magazine - September/October 2014 - 19
IEEE Power & Energy Magazine - September/October 2014 - 20
IEEE Power & Energy Magazine - September/October 2014 - 21
IEEE Power & Energy Magazine - September/October 2014 - 22
IEEE Power & Energy Magazine - September/October 2014 - 23
IEEE Power & Energy Magazine - September/October 2014 - 24
IEEE Power & Energy Magazine - September/October 2014 - 25
IEEE Power & Energy Magazine - September/October 2014 - 26
IEEE Power & Energy Magazine - September/October 2014 - 27
IEEE Power & Energy Magazine - September/October 2014 - 28
IEEE Power & Energy Magazine - September/October 2014 - 29
IEEE Power & Energy Magazine - September/October 2014 - 30
IEEE Power & Energy Magazine - September/October 2014 - 31
IEEE Power & Energy Magazine - September/October 2014 - 32
IEEE Power & Energy Magazine - September/October 2014 - 33
IEEE Power & Energy Magazine - September/October 2014 - 34
IEEE Power & Energy Magazine - September/October 2014 - 35
IEEE Power & Energy Magazine - September/October 2014 - 36
IEEE Power & Energy Magazine - September/October 2014 - 37
IEEE Power & Energy Magazine - September/October 2014 - 38
IEEE Power & Energy Magazine - September/October 2014 - 39
IEEE Power & Energy Magazine - September/October 2014 - 40
IEEE Power & Energy Magazine - September/October 2014 - 41
IEEE Power & Energy Magazine - September/October 2014 - 42
IEEE Power & Energy Magazine - September/October 2014 - 43
IEEE Power & Energy Magazine - September/October 2014 - 44
IEEE Power & Energy Magazine - September/October 2014 - 45
IEEE Power & Energy Magazine - September/October 2014 - 46
IEEE Power & Energy Magazine - September/October 2014 - 47
IEEE Power & Energy Magazine - September/October 2014 - 48
IEEE Power & Energy Magazine - September/October 2014 - 49
IEEE Power & Energy Magazine - September/October 2014 - 50
IEEE Power & Energy Magazine - September/October 2014 - 51
IEEE Power & Energy Magazine - September/October 2014 - 52
IEEE Power & Energy Magazine - September/October 2014 - 53
IEEE Power & Energy Magazine - September/October 2014 - 54
IEEE Power & Energy Magazine - September/October 2014 - 55
IEEE Power & Energy Magazine - September/October 2014 - 56
IEEE Power & Energy Magazine - September/October 2014 - 57
IEEE Power & Energy Magazine - September/October 2014 - 58
IEEE Power & Energy Magazine - September/October 2014 - 59
IEEE Power & Energy Magazine - September/October 2014 - 60
IEEE Power & Energy Magazine - September/October 2014 - 61
IEEE Power & Energy Magazine - September/October 2014 - 62
IEEE Power & Energy Magazine - September/October 2014 - 63
IEEE Power & Energy Magazine - September/October 2014 - 64
IEEE Power & Energy Magazine - September/October 2014 - 65
IEEE Power & Energy Magazine - September/October 2014 - 66
IEEE Power & Energy Magazine - September/October 2014 - 67
IEEE Power & Energy Magazine - September/October 2014 - 68
IEEE Power & Energy Magazine - September/October 2014 - 69
IEEE Power & Energy Magazine - September/October 2014 - 70
IEEE Power & Energy Magazine - September/October 2014 - 71
IEEE Power & Energy Magazine - September/October 2014 - 72
IEEE Power & Energy Magazine - September/October 2014 - 73
IEEE Power & Energy Magazine - September/October 2014 - 74
IEEE Power & Energy Magazine - September/October 2014 - 75
IEEE Power & Energy Magazine - September/October 2014 - 76
IEEE Power & Energy Magazine - September/October 2014 - 77
IEEE Power & Energy Magazine - September/October 2014 - 78
IEEE Power & Energy Magazine - September/October 2014 - 79
IEEE Power & Energy Magazine - September/October 2014 - 80
IEEE Power & Energy Magazine - September/October 2014 - 81
IEEE Power & Energy Magazine - September/October 2014 - 82
IEEE Power & Energy Magazine - September/October 2014 - 83
IEEE Power & Energy Magazine - September/October 2014 - 84
IEEE Power & Energy Magazine - September/October 2014 - 85
IEEE Power & Energy Magazine - September/October 2014 - 86
IEEE Power & Energy Magazine - September/October 2014 - 87
IEEE Power & Energy Magazine - September/October 2014 - 88
IEEE Power & Energy Magazine - September/October 2014 - 89
IEEE Power & Energy Magazine - September/October 2014 - 90
IEEE Power & Energy Magazine - September/October 2014 - 91
IEEE Power & Energy Magazine - September/October 2014 - 92
IEEE Power & Energy Magazine - September/October 2014 - 93
IEEE Power & Energy Magazine - September/October 2014 - 94
IEEE Power & Energy Magazine - September/October 2014 - 95
IEEE Power & Energy Magazine - September/October 2014 - 96
IEEE Power & Energy Magazine - September/October 2014 - Cover3
IEEE Power & Energy Magazine - September/October 2014 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com