IEEE Power & Energy Magazine - September/October 2017 - 60

Since its first pilot in 2009, PJM has integrated
nearly 300 MW of advanced energy storage resources
into its market.
they provide to the market as well as discusses services that
energy storage resources may provide in the future along with
integration opportunities, resulting in a larger amount of storage deployed within the grid.

The PJM System and Market Overview
PJM is responsible for ensuring reliable power system operation and efficient electricity market operation. It also manages
regional planning processes for generation and transmission
expansion to ensure future system reliability. The PJM-operated bulk power system is part of the Eastern Interconnection
of North America, covering all or parts of 13 states and the
District of Columbia. PJM operates 82,546 mi of transmission
lines, coordinates the dispatch of 1,304 generation resources,
and serves an all-time peak load of 165,492 MW. To achieve
greater economic efficiency, PJM also administers the largest competitive wholesale electricity market in the world,
with more than 1,000 market participants and different market products used to enable reliable operations at the least
possible cost. In 2016, PJM billed a total of US$39.05 billion
through its markets. The market products include energy,
capacity, ancillary services, and financial transmission rights.
The PJM energy market is a two-settlement market: a dayahead (DA) financial market and a real-time (RT) balancing
market. The DA market is cleared based on bid-in demand
submitted by market participants plus a system reserve requirement. The RT market cooptimizes energy and ancillary
services to balance generation with system load, maintain
system reserves, and resolve transmission network congestion, resulting in resource-specific dispatch and locational
marginal prices (LMPs).

PJM's capacity market, called the reliability pricing model,
maintains resource adequacy and ensures that there will be
sufficient capacity [generation, storage, or demand response
(DR)] to meet future peak load plus a required reserve margin. In 2016, PJM began to employ rules emphasizing performance-based requirements in the capacity market to reward
well-performing resources and penalize those that fail to perform when needed most. In general, the capacity performance
product requires resources to be available and to follow PJM
dispatch instructions during emergency operating events.
PJM's ancillary service markets include performance-based
regulation market, synchronized and nonsynchronized reserve
markets, which have been cooptimized with the RT energy
market every 5 min since 2012. PJM's regulation market has
two control signals: 1) the slower signal designed to best fit traditional resources with the ability to sustain energy deviation for
long periods of time with relatively slower ramp rates and 2) the
faster signal designed for faster ramping resources that require
a more "neutral" signal with a long-term energy average of zero.
Following FERC Order 755, the regulation market introduced
the concept of "effective MW" of equivalent service, as well as
three clearing price components: capability, performance, and
lost opportunity cost. The performance score of each regulating
resource is used for both scaling financial compensation and
adjusting future offers. Benefit factor, i.e., the rate of substitution, equates varying resources' characteristics into an effective
multiplier for equivalent service.

Energy Storage in PJM

Traditional generating units, for example, nuclear, run-of-river
hydroelectric, fossil, and renewables, can only inject energy into
the grid. Energy storage devices change
this dynamic, allowing for the ability to
withdraw energy from the bulk power system for later injection. This time shifting
of energy allows storage resources to arbitrage price differences throughout the day,
drawing power at low prices and injecting
at high prices, while providing reliability
services needed by the grid. PJM's market rules do not prohibit any resource type
from participating in the wholesale markets
as long as the resource meets the participation requirements.
Storage devices can participate in PJM's
markets at both the transmission and disfigure 1. An AES battery trailer. (Image used with permission from PJM.)
tribution voltage levels. To participate at
60	

ieee power & energy magazine	

september/october 2017



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - September/October 2017

IEEE Power & Energy Magazine - September/October 2017 - Cover1
IEEE Power & Energy Magazine - September/October 2017 - Cover2
IEEE Power & Energy Magazine - September/October 2017 - 1
IEEE Power & Energy Magazine - September/October 2017 - 2
IEEE Power & Energy Magazine - September/October 2017 - 3
IEEE Power & Energy Magazine - September/October 2017 - 4
IEEE Power & Energy Magazine - September/October 2017 - 5
IEEE Power & Energy Magazine - September/October 2017 - 6
IEEE Power & Energy Magazine - September/October 2017 - 7
IEEE Power & Energy Magazine - September/October 2017 - 8
IEEE Power & Energy Magazine - September/October 2017 - 9
IEEE Power & Energy Magazine - September/October 2017 - 10
IEEE Power & Energy Magazine - September/October 2017 - 11
IEEE Power & Energy Magazine - September/October 2017 - 12
IEEE Power & Energy Magazine - September/October 2017 - 13
IEEE Power & Energy Magazine - September/October 2017 - 14
IEEE Power & Energy Magazine - September/October 2017 - 15
IEEE Power & Energy Magazine - September/October 2017 - 16
IEEE Power & Energy Magazine - September/October 2017 - 17
IEEE Power & Energy Magazine - September/October 2017 - 18
IEEE Power & Energy Magazine - September/October 2017 - 19
IEEE Power & Energy Magazine - September/October 2017 - 20
IEEE Power & Energy Magazine - September/October 2017 - 21
IEEE Power & Energy Magazine - September/October 2017 - 22
IEEE Power & Energy Magazine - September/October 2017 - 23
IEEE Power & Energy Magazine - September/October 2017 - 24
IEEE Power & Energy Magazine - September/October 2017 - 25
IEEE Power & Energy Magazine - September/October 2017 - 26
IEEE Power & Energy Magazine - September/October 2017 - 27
IEEE Power & Energy Magazine - September/October 2017 - 28
IEEE Power & Energy Magazine - September/October 2017 - 29
IEEE Power & Energy Magazine - September/October 2017 - 30
IEEE Power & Energy Magazine - September/October 2017 - 31
IEEE Power & Energy Magazine - September/October 2017 - 32
IEEE Power & Energy Magazine - September/October 2017 - 33
IEEE Power & Energy Magazine - September/October 2017 - 34
IEEE Power & Energy Magazine - September/October 2017 - 35
IEEE Power & Energy Magazine - September/October 2017 - 36
IEEE Power & Energy Magazine - September/October 2017 - 37
IEEE Power & Energy Magazine - September/October 2017 - 38
IEEE Power & Energy Magazine - September/October 2017 - 39
IEEE Power & Energy Magazine - September/October 2017 - 40
IEEE Power & Energy Magazine - September/October 2017 - 41
IEEE Power & Energy Magazine - September/October 2017 - 42
IEEE Power & Energy Magazine - September/October 2017 - 43
IEEE Power & Energy Magazine - September/October 2017 - 44
IEEE Power & Energy Magazine - September/October 2017 - 45
IEEE Power & Energy Magazine - September/October 2017 - 46
IEEE Power & Energy Magazine - September/October 2017 - 47
IEEE Power & Energy Magazine - September/October 2017 - 48
IEEE Power & Energy Magazine - September/October 2017 - 49
IEEE Power & Energy Magazine - September/October 2017 - 50
IEEE Power & Energy Magazine - September/October 2017 - 51
IEEE Power & Energy Magazine - September/October 2017 - 52
IEEE Power & Energy Magazine - September/October 2017 - 53
IEEE Power & Energy Magazine - September/October 2017 - 54
IEEE Power & Energy Magazine - September/October 2017 - 55
IEEE Power & Energy Magazine - September/October 2017 - 56
IEEE Power & Energy Magazine - September/October 2017 - 57
IEEE Power & Energy Magazine - September/October 2017 - 58
IEEE Power & Energy Magazine - September/October 2017 - 59
IEEE Power & Energy Magazine - September/October 2017 - 60
IEEE Power & Energy Magazine - September/October 2017 - 61
IEEE Power & Energy Magazine - September/October 2017 - 62
IEEE Power & Energy Magazine - September/October 2017 - 63
IEEE Power & Energy Magazine - September/October 2017 - 64
IEEE Power & Energy Magazine - September/October 2017 - 65
IEEE Power & Energy Magazine - September/October 2017 - 66
IEEE Power & Energy Magazine - September/October 2017 - 67
IEEE Power & Energy Magazine - September/October 2017 - 68
IEEE Power & Energy Magazine - September/October 2017 - 69
IEEE Power & Energy Magazine - September/October 2017 - 70
IEEE Power & Energy Magazine - September/October 2017 - 71
IEEE Power & Energy Magazine - September/October 2017 - 72
IEEE Power & Energy Magazine - September/October 2017 - 73
IEEE Power & Energy Magazine - September/October 2017 - 74
IEEE Power & Energy Magazine - September/October 2017 - 75
IEEE Power & Energy Magazine - September/October 2017 - 76
IEEE Power & Energy Magazine - September/October 2017 - 77
IEEE Power & Energy Magazine - September/October 2017 - 78
IEEE Power & Energy Magazine - September/October 2017 - 79
IEEE Power & Energy Magazine - September/October 2017 - 80
IEEE Power & Energy Magazine - September/October 2017 - 81
IEEE Power & Energy Magazine - September/October 2017 - 82
IEEE Power & Energy Magazine - September/October 2017 - 83
IEEE Power & Energy Magazine - September/October 2017 - 84
IEEE Power & Energy Magazine - September/October 2017 - 85
IEEE Power & Energy Magazine - September/October 2017 - 86
IEEE Power & Energy Magazine - September/October 2017 - 87
IEEE Power & Energy Magazine - September/October 2017 - 88
IEEE Power & Energy Magazine - September/October 2017 - 89
IEEE Power & Energy Magazine - September/October 2017 - 90
IEEE Power & Energy Magazine - September/October 2017 - 91
IEEE Power & Energy Magazine - September/October 2017 - 92
IEEE Power & Energy Magazine - September/October 2017 - 93
IEEE Power & Energy Magazine - September/October 2017 - 94
IEEE Power & Energy Magazine - September/October 2017 - 95
IEEE Power & Energy Magazine - September/October 2017 - 96
IEEE Power & Energy Magazine - September/October 2017 - 97
IEEE Power & Energy Magazine - September/October 2017 - 98
IEEE Power & Energy Magazine - September/October 2017 - 99
IEEE Power & Energy Magazine - September/October 2017 - 100
IEEE Power & Energy Magazine - September/October 2017 - 101
IEEE Power & Energy Magazine - September/October 2017 - 102
IEEE Power & Energy Magazine - September/October 2017 - 103
IEEE Power & Energy Magazine - September/October 2017 - 104
IEEE Power & Energy Magazine - September/October 2017 - 105
IEEE Power & Energy Magazine - September/October 2017 - 106
IEEE Power & Energy Magazine - September/October 2017 - 107
IEEE Power & Energy Magazine - September/October 2017 - 108
IEEE Power & Energy Magazine - September/October 2017 - 109
IEEE Power & Energy Magazine - September/October 2017 - 110
IEEE Power & Energy Magazine - September/October 2017 - 111
IEEE Power & Energy Magazine - September/October 2017 - 112
IEEE Power & Energy Magazine - September/October 2017 - Cover3
IEEE Power & Energy Magazine - September/October 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com