IEEE Power & Energy Magazine - September/October 2019 - 38

TSO

Bulk
Generation

TO
DO
Aggregator

DR

DER

DR

figure 10. The New York current coordination framework.
DR: distributed resource.

aggregators for nonwire alternative (NWA) procurement.
DER aggregators and their customers can also access wholesale settlement and billing services through New York Independent System Operator (NYISO). This approach includes
rules for joint participation in utility NWA procurement and
the NYISO markets that form the basis for operational coordination with NYISO.
DSP 2.0 is intended to increase visibility and operational control over DERs to enable integrated markets for
wholesale and distribution services. In DSP 2.0, DSOs, as
an option, would offer wholesale scheduling and dispatch
services. This is proposed to enable customers and aggregators to maximize the value of their resources across NYISO
wholesale and distribution markets. In DSP 2.0, aggregators

can still access wholesale markets directly through NYISO.
NYISO would also need enhanced capabilities to monitor
and control DERs and has proposed an evolution for the
structure of operational coordination. Figure 12 shows the
NYISO's alternative 2, which is similar to the Joint Utilities' conceptual third evolution, called DSP 2.x.
In this conceptual model, aggregators would no longer
interface with NYISO. Instead, the DSO would coordinate
both transactions on the distribution and physical interchange across the T-D interface. The few direct interfaces
between DERs and NYISO would involve distribution-connected BPS resources. This may be a longer-term phase of
operational coordination development that may develop in
response to transactional distribution markets.

Summary
Current TDC coordination structures across the globe exhibit
considerable DO bypassing, with the attendant issues of hidden coupling and bulk system cybervulnerability. All current
models reflect incremental evolution based on the existing
legacy structure and an initial focus on market access for
DER and market efficiency issues. As such, none of the locations has fully addressed the critical architectural structure
issues that will impact operational risk, chiefly reliability and
resilience. A more focused examination of alternative architectural structures in relation to operational risk is needed.
Future coordination alternatives fundamentally involve two
schools of thought regarding coordination structure: 1) a centralized approach in which the TSO performs all coordination
and 2) layered approaches in which a DSO has a significant
role in coordination. The choice of centralized or layered structure is a foundational architectural decision that has significant

Retail Services

Retail Services
NYISO

NYISO

Wholesale Services

Operational Control

Limited Operational Control
Distribution
System
Platform

Aggregators

Wholesale Services

Distribution
System
Platform

Aggregators

DER Customers

Demand Storage
Response
(a)

DER Customers

Demand Storage
Response
(b)

figure 11. Joint utilities of the New York TDC coordination models: (a) DSP 1.0 wholesale and retail services and
(b) DSP 2.0 wholesale and retail services and operational control.
38

ieee power & energy magazine

september/october 2019



IEEE Power & Energy Magazine - September/October 2019

Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - September/October 2019

Contents
IEEE Power & Energy Magazine - September/October 2019 - Cover1
IEEE Power & Energy Magazine - September/October 2019 - Cover2
IEEE Power & Energy Magazine - September/October 2019 - Contents
IEEE Power & Energy Magazine - September/October 2019 - 2
IEEE Power & Energy Magazine - September/October 2019 - 3
IEEE Power & Energy Magazine - September/October 2019 - 4
IEEE Power & Energy Magazine - September/October 2019 - 5
IEEE Power & Energy Magazine - September/October 2019 - 6
IEEE Power & Energy Magazine - September/October 2019 - 7
IEEE Power & Energy Magazine - September/October 2019 - 8
IEEE Power & Energy Magazine - September/October 2019 - 9
IEEE Power & Energy Magazine - September/October 2019 - 10
IEEE Power & Energy Magazine - September/October 2019 - 11
IEEE Power & Energy Magazine - September/October 2019 - 12
IEEE Power & Energy Magazine - September/October 2019 - 13
IEEE Power & Energy Magazine - September/October 2019 - 14
IEEE Power & Energy Magazine - September/October 2019 - 15
IEEE Power & Energy Magazine - September/October 2019 - 16
IEEE Power & Energy Magazine - September/October 2019 - 17
IEEE Power & Energy Magazine - September/October 2019 - 18
IEEE Power & Energy Magazine - September/October 2019 - 19
IEEE Power & Energy Magazine - September/October 2019 - 20
IEEE Power & Energy Magazine - September/October 2019 - 21
IEEE Power & Energy Magazine - September/October 2019 - 22
IEEE Power & Energy Magazine - September/October 2019 - 23
IEEE Power & Energy Magazine - September/October 2019 - 24
IEEE Power & Energy Magazine - September/October 2019 - 25
IEEE Power & Energy Magazine - September/October 2019 - 26
IEEE Power & Energy Magazine - September/October 2019 - 27
IEEE Power & Energy Magazine - September/October 2019 - 28
IEEE Power & Energy Magazine - September/October 2019 - 29
IEEE Power & Energy Magazine - September/October 2019 - 30
IEEE Power & Energy Magazine - September/October 2019 - 31
IEEE Power & Energy Magazine - September/October 2019 - 32
IEEE Power & Energy Magazine - September/October 2019 - 33
IEEE Power & Energy Magazine - September/October 2019 - 34
IEEE Power & Energy Magazine - September/October 2019 - 35
IEEE Power & Energy Magazine - September/October 2019 - 36
IEEE Power & Energy Magazine - September/October 2019 - 37
IEEE Power & Energy Magazine - September/October 2019 - 38
IEEE Power & Energy Magazine - September/October 2019 - 39
IEEE Power & Energy Magazine - September/October 2019 - 40
IEEE Power & Energy Magazine - September/October 2019 - 41
IEEE Power & Energy Magazine - September/October 2019 - 42
IEEE Power & Energy Magazine - September/October 2019 - 43
IEEE Power & Energy Magazine - September/October 2019 - 44
IEEE Power & Energy Magazine - September/October 2019 - 45
IEEE Power & Energy Magazine - September/October 2019 - 46
IEEE Power & Energy Magazine - September/October 2019 - 47
IEEE Power & Energy Magazine - September/October 2019 - 48
IEEE Power & Energy Magazine - September/October 2019 - 49
IEEE Power & Energy Magazine - September/October 2019 - 50
IEEE Power & Energy Magazine - September/October 2019 - 51
IEEE Power & Energy Magazine - September/October 2019 - 52
IEEE Power & Energy Magazine - September/October 2019 - 53
IEEE Power & Energy Magazine - September/October 2019 - 54
IEEE Power & Energy Magazine - September/October 2019 - 55
IEEE Power & Energy Magazine - September/October 2019 - 56
IEEE Power & Energy Magazine - September/October 2019 - 57
IEEE Power & Energy Magazine - September/October 2019 - 58
IEEE Power & Energy Magazine - September/October 2019 - 59
IEEE Power & Energy Magazine - September/October 2019 - 60
IEEE Power & Energy Magazine - September/October 2019 - 61
IEEE Power & Energy Magazine - September/October 2019 - 62
IEEE Power & Energy Magazine - September/October 2019 - 63
IEEE Power & Energy Magazine - September/October 2019 - 64
IEEE Power & Energy Magazine - September/October 2019 - 65
IEEE Power & Energy Magazine - September/October 2019 - 66
IEEE Power & Energy Magazine - September/October 2019 - 67
IEEE Power & Energy Magazine - September/October 2019 - 68
IEEE Power & Energy Magazine - September/October 2019 - 69
IEEE Power & Energy Magazine - September/October 2019 - 70
IEEE Power & Energy Magazine - September/October 2019 - 71
IEEE Power & Energy Magazine - September/October 2019 - 72
IEEE Power & Energy Magazine - September/October 2019 - 73
IEEE Power & Energy Magazine - September/October 2019 - 74
IEEE Power & Energy Magazine - September/October 2019 - 75
IEEE Power & Energy Magazine - September/October 2019 - 76
IEEE Power & Energy Magazine - September/October 2019 - 77
IEEE Power & Energy Magazine - September/October 2019 - 78
IEEE Power & Energy Magazine - September/October 2019 - 79
IEEE Power & Energy Magazine - September/October 2019 - 80
IEEE Power & Energy Magazine - September/October 2019 - 81
IEEE Power & Energy Magazine - September/October 2019 - 82
IEEE Power & Energy Magazine - September/October 2019 - 83
IEEE Power & Energy Magazine - September/October 2019 - 84
IEEE Power & Energy Magazine - September/October 2019 - 85
IEEE Power & Energy Magazine - September/October 2019 - 86
IEEE Power & Energy Magazine - September/October 2019 - 87
IEEE Power & Energy Magazine - September/October 2019 - 88
IEEE Power & Energy Magazine - September/October 2019 - 89
IEEE Power & Energy Magazine - September/October 2019 - 90
IEEE Power & Energy Magazine - September/October 2019 - 91
IEEE Power & Energy Magazine - September/October 2019 - 92
IEEE Power & Energy Magazine - September/October 2019 - 93
IEEE Power & Energy Magazine - September/October 2019 - 94
IEEE Power & Energy Magazine - September/October 2019 - 95
IEEE Power & Energy Magazine - September/October 2019 - 96
IEEE Power & Energy Magazine - September/October 2019 - 97
IEEE Power & Energy Magazine - September/October 2019 - 98
IEEE Power & Energy Magazine - September/October 2019 - 99
IEEE Power & Energy Magazine - September/October 2019 - 100
IEEE Power & Energy Magazine - September/October 2019 - Cover3
IEEE Power & Energy Magazine - September/October 2019 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com