Battery Power - Winter 2014 - (Page 30)

ReseaRch & Development ORNL-Grown Oxygen 'Sponge' Presents Path to Better Catalysts, Energy Materials Scientists at the Department of Energy's Oak Ridge National Laboratory have developed a new oxygen "sponge" that can easily absorb or shed oxygen atoms at low temperatures. Materials with these novel characteristics would be useful in devices such as rechargeable batteries, sensors, gas converters and fuel cells. Materials containing atoms that can switch back and forth between multiple oxidation states are technologically important but very rare in nature, says ORNL's Ho Nyung Lee, who led the international research team that published its findings in Nature Materials. "Typically, most elements have a stable oxidation state, and they want to stay there," Lee said. "So far there aren't many known materials in which atoms are easily convertible between different valence states. We've found a chemical substance that can reversibly change between phases at rather low temperatures without deteriorating, which is a very intriguing phenomenon." Many energy storage and sensor devices rely on this valenceswitching trick, known as a reduction-oxidation or redox reaction. For instance, catalytic gas converters use platinum-based metals to transform harmful emissions such as carbon monoxide into nontoxic gases by adding oxygen. Less expensive oxidebased alternatives to platinum usually require very high temperatures, at least 600°C to 700°C, to trigger the redox reactions, making such materials impractical in conventional applications. "We show that our multivalent oxygen sponges can undergo such a redox process at as low as 200°C, which is comparable to the working temperature of noble metal catalysts," Lee said. "Granted, our material is not coming to your car tomorrow, but this discovery shows that multivalent oxides can play a pivotal role in future energy technologies." The team's material consists of strontium cobaltite, which is known to occur in a preferred crystalline form called brownmillerite. Through an epitaxial stabilization process, the ORNL-led team discovered a new recipe to synthesize the material in a more desirable phase known as perovskite. The researchers have filed an invention disclosure on their findings. "These two phases have very distinct physical properties," Lee said. "One is a metal, the other is an insulator. One responds to magnetic fields, the other does not, and we can make it switch back and forth within a second at significantly reduced temperatures." The international team's design and testing of this novel advanced material from scratch required multidisciplinary expertise and sophisticated tools from such places as Argonne National Laboratory and ORNL, including Argonne's Advanced Photon Source and ORNL's Center for Nanophase Materials Science, says Lee. "As we showed in this study, only through the study of a well-defined system can we build a framework for the design of next generation energy materials," said coauthor John Freeland of Argonne. "This insight was made possible by merging the ca- 30 Battery Power * Winter 2014 This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms. This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms. pabilities at Oak Ridge and Argonne national labs for advanced synthesis and characterization of novel materials." The study, "Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge," involved ORNL's Hyoungjeen Jeen, Woo Seok Choi, Matthew Chisholm, Michael Biegalski and Dongwon Shin; Argonne's Chad Folkman, I-Cheng Tung, Dillon Fong and John Freeland; and Hokkaido University's Hiromichi Ohta. The work was supported by DOE's Office of Science. The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the US Department of Energy's Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment and national security. The Center for Nanophase Materials Science is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. www.BatteryPowerOnline.com http://www.BatteryPowerOnline.com

Table of Contents for the Digital Edition of Battery Power - Winter 2014

Editor’s Choice
IDT Announces Next-Generation WPC 1.1 Wireless Power Receiver for Portable Applications
NREL to Research Battery Storage Approaches in Support of ARPA-E RANGE Program
Features
UPS Goes Green to Save Green
When Rubber Stamping is Not Enough
Purdue University Project Aims to Mass-Produce ‘Nanopetals’ for Sensors, Batteries
Growth in Battery Industry Sparks the Need for Battery Innovation Center
ORNL-Grown Oxygen ‘Sponge’ Presents Path to Better Catalysts, Energy Materials
New Products
Batteries
ICs & Semiconductors
Charging, Testing & Monitoring
ICs & Semiconductors
Components
Manufacturing
Departments
Industry News
Marketplace

Battery Power - Winter 2014

https://www.nxtbook.com/nxtbooks/webcom/batterypower_2017spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016winter
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016fall
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016summer
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015winter
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015fall
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015summer
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014fall
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014summer
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014winter
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20131112
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130910
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130708
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130506
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130304
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130102
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20121112
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120910
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120506
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120304
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120102
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20111112
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20110910
https://www.nxtbookmedia.com