Battery Power - Fall 2016 - 6

Feature currently being addressed by calendaring, but the surface cannot be made as smooth as it possibly could be, enabling micro voids to be created between the particles. Furthermore, commercial calendars are very expensive and difficult to maintain, and ultimately the winding of the 'Swiss Roll' needs to occur before complete drying to avoid cracking. As you may deduce, there is potential improvement within the manufacturing of electrodes that can translate into substantial manufacturing cost reduction. This is only realizable if the electrode material currently in a slurry form can be replaced by electrode material that can be made into homogeneous film possessing a very controlled thickness and width. This will allow the coating process to be relatively simple, inexpensive and environmentally clean, using water as the solvent. The resulting film (an electrode sheet) then can be immediately laminated onto another film (layers of electrode sheets), and most remarkably, the winding of the resulting electrode film can be done at any time without any risk of cracking. are needed to increase coater speed and/or other unit operations significantly. Cost/KWh of Energy Storage Using Lithium-Ion Batteries The high costs of batteries represent a significant challenge and barrier to mass adoption for automotive manufacturers that produce electric vehicles. As stated earlier, the current cost of storing electrical energy using lithiumion batteries is above $500/kWh. To reduce costs below $100/kWh, we must explore an alternate lithium-ion battery chemistry, along with the use of new materials and low cost manufacturing methods that can work well within this new chemistry and its processes. As noted earlier, a substantial portion of the cost of manufacturing a lithium-ion battery is in the manufacturing and production of its cathode. Thus, the cost of cathode materials and manufacturing must be reduced in order to effectively lower the cost of manufacturing lithium-ion batteries. Additionally, the life cycle of a lithium-ion battery needs to be extended. Currently, owners of electric vehicles have to purchase several replacement battery packs multiple times throughout the lifetime of their vehicle ownership. Thus, electric vehicles would make more economic sense if the battery's life cycle paralleled the vehicle ownership. Again, potential breakthrough solutions that drastically improve life cycles will most likely require exploring a new lithium-ion battery chemistry rather than continuing to focus on just improving conventional intercalation chemistry that promises only incremental improvements over existing solutions. "Moore's Law" is the observation that, over the history of computing hardware, the number of transistors in a dense integrated circuit has doubled approximately every two years. After 50 years, Moore's Law solidified itself as the golden rule for the electronics industry and has economic, technological and societal impact. However, Moore's Law does not apply to batteries. The exponential increase of computer power over a long period of time is due to advances in lithography and technology and has no fundamental meaning, nor should an exponential increase to be expected in any other area of technology. In fact, ongoing improvements in processors will slow and eventually stop as feature sizes approach atomic dimensions, if heat dissipation does not stop improvement before then. The scale of economy based on conventional intercalation chemistry tends to result in only incremental cost reduction, and there exists no evidence to support the specific energy of batteries increasing in any regular fashion. Indeed, most improvement in battery performance has come about from changing chemistry rather than from ongoing improvement within a given chemistry. In general, there are three ways to improve lithiumion batteries to reduce cost. At the material level, these batteries require materials that support high power and a wide state of charge (SOC) range, minimal impedance growth, and calendar aging. At the cell level, there are needs for new chemistry and electrode designs permitting shorter and thicker electrodes. In general but with exception, chemistries and designs that enable lower overall electrode area per battery and minimize battery size, will ultimately reduce cost. At the manufacturing level, identification and adoption of advanced processing technologies 6 Battery Power * Fall 2016 The Need to Reduce the Cost of Lithium-Ion Batteries A Solution to Drastically Lower the Cost of Lithium-Ion Batteries BioSolar's current research program focuses on improving the capacity and lowering the cost of storing electrical energy with lithium-ion batteries. In addition to developing technologies to commercialize in the near term, the company's long-term product development objective is to completely abandon the traditional intercalation chemistry www.BatteryPowerOnline.com http://www.BatteryPowerOnline.com

Table of Contents for the Digital Edition of Battery Power - Fall 2016

Improving Lithium-Ion Battery for Future Energy Storage Needs
Protecting Lithium Batteries and Battery Packs from Runaway Thermal Events
Sorting Busbar Choices for Electric Vehicle Power Distribution
2016 Battery Power Resource Guide
Battery Power - Fall 2016 - Cover1
Battery Power - Fall 2016 - Cover2
Battery Power - Fall 2016 - 3
Battery Power - Fall 2016 - Improving Lithium-Ion Battery for Future Energy Storage Needs
Battery Power - Fall 2016 - 5
Battery Power - Fall 2016 - 6
Battery Power - Fall 2016 - 7
Battery Power - Fall 2016 - Protecting Lithium Batteries and Battery Packs from Runaway Thermal Events
Battery Power - Fall 2016 - 9
Battery Power - Fall 2016 - Sorting Busbar Choices for Electric Vehicle Power Distribution
Battery Power - Fall 2016 - 11
Battery Power - Fall 2016 - 12
Battery Power - Fall 2016 - 13
Battery Power - Fall 2016 - 14
Battery Power - Fall 2016 - 15
Battery Power - Fall 2016 - 16
Battery Power - Fall 2016 - 17
Battery Power - Fall 2016 - 18
Battery Power - Fall 2016 - 19
Battery Power - Fall 2016 - 20
Battery Power - Fall 2016 - 21
Battery Power - Fall 2016 - 22
Battery Power - Fall 2016 - 23
Battery Power - Fall 2016 - 24
Battery Power - Fall 2016 - 25
Battery Power - Fall 2016 - 26
Battery Power - Fall 2016 - 27
Battery Power - Fall 2016 - 28
Battery Power - Fall 2016 - 29
Battery Power - Fall 2016 - 30
Battery Power - Fall 2016 - 31
Battery Power - Fall 2016 - 32
Battery Power - Fall 2016 - 33
Battery Power - Fall 2016 - 2016 Battery Power Resource Guide
Battery Power - Fall 2016 - 35
Battery Power - Fall 2016 - 36
Battery Power - Fall 2016 - 37
Battery Power - Fall 2016 - 38
Battery Power - Fall 2016 - 39
Battery Power - Fall 2016 - 40
Battery Power - Fall 2016 - 41
Battery Power - Fall 2016 - 42
Battery Power - Fall 2016 - 43
Battery Power - Fall 2016 - 44
Battery Power - Fall 2016 - 45
Battery Power - Fall 2016 - 46
Battery Power - Fall 2016 - Cover3
Battery Power - Fall 2016 - Cover4
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2017spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016winter
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016fall
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016summer
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2016spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015winter
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015fall
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015summer
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2015spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014fall
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014summer
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014spring
https://www.nxtbook.com/nxtbooks/webcom/batterypower_2014winter
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20131112
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130910
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130708
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130506
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130304
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20130102
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20121112
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120910
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120506
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120304
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20120102
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20111112
https://www.nxtbook.com/nxtbooks/webcom/batterypower_20110910
https://www.nxtbookmedia.com