Magnetics Business & Technology - Winter 2012 - (Page 16)

APPLICATION • COMPONENT DEVELOPMENTS Three New Orders for Solid-State Dynamic Nuclear Polarization NMR Systems The solid-state DNPNMR technology commercialized by Bruker finds its origins in the pioneering work of Professors Robert Griffin and Richard Temkin at the Massachusetts Institute of Technology (MIT, Cambridge, MA). The DNP-NMR systems utilize novel Bruker gyrotrons as the high power microwave source, Bruker’s Ascend 89 mm superconducting magnets, and ultra-fast AVANCE III HD electronics for the NMR experiment. Professor Henrike Heise, head of the Solid-State NMR group at the University of Düsseldorf, said, “The new 395 GHz DNPNMR system is the key to our realization of new, more detailed structural investigations of macromolecular complexes or structure-function studies on biomolecular complexes, and to further develop new life sciences applications. Furthermore, improved materials science applications such as the study of composite materials, glasses or inhomogeneous polymers will benefit from the dramatically improved sensitivity.” Bruker has announced three new orders for DNP-NMR research systems, including a 395 GHz DNP-NMR system, as well as two 263 GHz DNP-NMR systems or major upgrades. This DNP (Dynamic Nuclear Polarization) hyperpolarization technology will be available at the Universities of Düsseldorf, Darmstadt and Frankfurt for use in life science and materials research. All three projects were funded by the German Research Foundation DFG (Deutsche Forschungsgemeinschaft). As part of a major instrumentation initiative in Europe, the emerging DNP-NMR field has already benefitted from four already installed Bruker 263 GHz systems in Germany, Switzerland, France and The Netherlands. The field will be further enhanced through three other upcoming high field Bruker DNP-NMR installations, a 395 GHz in Göttingen (Germany), as well as two 527 GHz systems in Utrecht (The Netherlands) and Lyon (France). Dynamic Nuclear Polarization can enhance the sensitivity of solid-state NMR by approximately two orders of magnitude, by transferring polarization from the electron spins to the nuclear spins. With DNP-NMR completely new categories of samples can be investigated with the potential to provide much more detailed spectroscopic insights and a more comprehensive understanding of molecular interactions. IDT Wireless Power Solutions Selected by Primax For Wireless Charging Accessories Integrated Device Technology, Inc. (IDT), the Analog and Digital Company delivering mixed-signal semiconductor solutions, has announced that its wireless power solutions have been selected by Primax Electronics Ltd., a supplier of consumer and business electronics, for its wireless charging accessories. IDT will support Primax in the development of its innovative products with IDT’s award-winning inductive transmitter and receiver chipset. IDT’s IDTP9030 and IDTP9020 are a high-efficiency, full-featured inductive wireless power transmitter and receiver chipset. The IDTP9030 transmitter comprises the industry’s most integrated solution, saving up to 80 percent more board area compared to competitive offerings. Its small application footprint and Wireless Power Consortium (WPC) Qi certification make it well suited for use in next-generation magnetic induction-based charging mats and accessories. When coupled with the IDTP9020 receiver solution, it enables a proprietary high-power mode for up to 7 watts of wireless energy transfer to support higher-power devices and improve charging times. “We are pleased that Primax has selected IDT as its wireless power partner,” said Arman Naghavi, vice president and general manager of the Analog and Power Division at IDT. “Our successful magnetic inductance-based solutions provide Primax with a solid platform on which to develop its advanced charging solutions. In addition, we are leveraging our extensive wireless power experience to address magnetic resonance solutions, and we look forward to working with Primax and others to expand the magnetic resonance ecosystem.” “Primax is excited to partner with IDT for its wireless acces- 16 Magnetics Business & Technology • Winter 2012 www.MagneticsMagazine.com http://www.jwwinco.com http://www.jwwinco.com http://www.MagneticsMagazine.com

Table of Contents for the Digital Edition of Magnetics Business & Technology - Winter 2012

Magnetics Business & Technology - Winter 2012
Editor's Choice
Permanent Magnet Industry Outlook - 2013
Magnet Materials and Their Properties
Magnets • Materials • Measurement
Application • Component Developments
Magnetics 2013: Conference Preview
Research & Development
2012 Resource Guide
Industry News
Marketplace
Advertising Index
Spontaneous Thoughts: Retired, Senile and Dead

Magnetics Business & Technology - Winter 2012

https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019julyaug
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019janfeb
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011summer
https://www.nxtbookmedia.com