Magnetics Business & Technology - Summer 2014 - (Page 19)

MAGNETICS, MATERIALS & ASSEMBLIES Impurity Size Affects Performance of Emerging Superconductive Material Research from North Carolina State University finds that impurities can hurt performance, or possibly provide benefits, in a key superconductive material that is expected to find use in a host of applications, including future particle colliders. The size of the impurities determines whether they help or hinder the material's performance. At issue is a superconductive material called bismuth strontium calcium copper oxide (Bi2212). A superconductor is a material that can carry electricity without any loss, none of the energy is dissipated as heat, for example. Superconductive materials are currently used in medical MRI technology, and are expected to play a prominent role in emerging power technologies. "Bi2212 is the only high-temperature superconductor that can be made as a round wire, and is expected to have applications in magnets for use in everything from magnetic resonance imaging technologies to the next generation of super colliders, almost anything that falls under the category of high-energy physics or requires a very high magnetic field," said Golsa Naderi, a Ph.D. student at NC State and lead author of a paper describing the work. To use Bi2212 for any of these potential applications, the material needs to be formed into a multifilamentary wire, which contains 500 to1,000 Bi2212 filaments embedded in silver, and then heattreated to nearly 900°C. However, this processing results in impurities in the material. These impurities largely consist of porosity and bismuth strontium copper oxide (Bi2201). "We know that porosity, or the formation of voids in the Bi2212, is problematic. But we wanted to go beyond porosity and learn more about the Bi2201 impurities and how they could help or hurt www.MagneticsMagazine.com Bi2212's performance," said Dr. Justin Schwartz, senior author of the paper and Kobe Steel Distinguished Professor and head of the Department of Materials Science and Engineering at NC State. "That would help us determine how to optimize the material's superconducting characteristics through better processing." The researchers found that nanoscale impurities, from 1.2 to 2.5 nanometers wide, appear to improve Bi2212's performance as a superconductor. "The nanoscale impurities, or defects, serve as centers for 'pinning' magnetic flux in place," Naderi said. "Without those pinning centers, the magnetic vortices can move, creating resistivity and impeding superconductivity when a magnetic field is present. "People want to use Bi2212 to create high magnetic fields using current, so pinning magnetic flux is essential, technology using this material must be able to operate in the presence of a magnetic field," Naderi said. But the researchers also found that large-scale impurities, measured in microns (or micrometers), are detrimental to Bi2212's superconductivity. This is because these impurities are so large that they act as barriers to current, forcing electrons to change their paths and weakening the material's superconductivity. "Our previous work had shown that large-scale Bi2201 defects were a significant problem for Bi2212 wires, and this work bears that out," Schwartz said. "But now we know that at the nanoscale, Bi2201 is not detrimental, and may improve performance." The researchers say that a key next step will be for materials engineers to reassess long-standing processing protocols for Bi2212 wires to determine how to minimize the formation of the largescale impurities. Summer 2014 * Magnetics Business & Technology 19 http://www.newenglandwire.com http://www.newenglandwire.com http://www.MagneticsMagazine.com

Table of Contents for the Digital Edition of Magnetics Business & Technology - Summer 2014

Editor's Choice
Moving Beyond Helium in Magnetics Research
Advances in Ferrite-Integrated On-Chip Inductors Using Aerosol Deposition
A Fresh Look at Design of Buck and Boost Inductors for SMPS Converters
Research & Development
Handheld Three-Axis Magnetometers
Magnetics, Materials & Assemblies
Software & Design
Test & Measurement
Industry News
Marketplace / Advertising Index
Spontaneous Thoughts: A Different Paradigm

Magnetics Business & Technology - Summer 2014

https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019julyaug
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019janfeb
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011summer
https://www.nxtbookmedia.com