Magnetics Business & Technology - November/December 2019 - 4

EDITOR'S CHOICE

Magnetic Impedance Wire from Aichi Steel Used in
Experimental System for Automated Driving
Recent tests of automated passenger
buses in Japan have further validated
the development of highly sensitive
magnetic impedance sensors using
Aichi Steel's amorphous metal magnet
wire for guiding the vehicles, especially
in places where global positioning
signals are weak.
Made of FeCoSiB alloy wire with a
diameter of 20 micrometers and less,
the sensors have a sensitivity more
than 10,000 times greater than conventional magnetic sensors. The wire is amorphous
without a crystalline structure and exhibits ideal soft magnetism characteristics making it
perfectly suited for high sensitivity sensors, says Aichi. It produces the wire from the raw
material stage using its proprietary material technology. The sensor system is developed
by its business unit, Aichi Micro Intelligent Corp.
In the latest road tests, an automated driving bus equipped with the MI sensor modules
provided by Advanced Smart Mobility Co., Ltd., traveled repeatedly in a 1.4 kilometer section in Tama New Town with magnetic markers laid underground at an interval of 2 meters.
The area is hilly country rich in undulations and slopes. There are many places where
pedestrian bridges and roadside trees make the reception of GPS signals difficult.
An MI sensor module is affixed to the base of vehicles to measure the fitted vehicle's
position with high accuracy from the weak magnetic force of magnetic markers fitted along
the road and to control steering equipment so that the vehicle passes over the magnetic
markers. Going forward, Aichi plans to continue its efforts in verifying the system especially
for such conditions.
The magnetic impedance effect is an electromagnetic phenomenon where the impedance of a magnetic material changes relative to the strength of the external magnetic field
when a high frequency current or pulse current which causes a skin effect on the magnetic
material is applied. When amorphous wire is used as the magnetic material, the effect is
particularly marked.
According to Aichi, when the frequency of the pulse current applied to the amorphous wire
is increased to around 10 MHz the domain wall movement is suppressed, and the magnetization mainly occurs by the rotation of the magnetization vector. Unlike other types of
magnetic sensors with domain wall movement, MI Sensors can attain ultra-high sensitivity
with extremely low noise. The latest MI sensor achieves very high sensitivity by applying a
pulsed magnetic field equivalent
to .5 to 1GHz.
In operation, a pulse current
is passed through the amorphous wire and the reaction
relative to the external magnetic
field is detected by the pickup
coil wrapped around the wire.
Charging the amorphous wire
with a pulse of current creates a
change in impedance that varies
greatly depending on the external magnetic field as a result of
the MI effect.

4

Volume 18, Issue 6
Editor & Publisher
David Webster
Contributing Editor
Dr. Stan Trout
Director of Operations and
Support Services
Ross Webster
Director of Sales and Content
Scott Webster
Design & Layout
Scott Webster
Administration
Marsha Grillo

Magnetics Business & Technology (ISSN
#1535-1998) is a publication of Webcom
Communications Corp.
Subscriptions for one year are free for the
qualified US, $44.00 non-qualified US and
$60.00 outside US. Single copies are $20.00
each plus shipping. Back issues are available for $20.00. Payment must be made
in US funds in order to process the order.
Direct all subscription inquiries, orders and
address changes to Fulfillment Services.
Reprints: For reprint requests contact Webcom Communications at 720-528-3770.

© Copyright 2019 Webcom Communications
Corp. Material in this publication may not be
reproduced in any form without written permission. Requests for permission should be
directed to the customer service manager.

Experimental automated driving bus in Japan

Magnetics Business & Technology *

November/December 2019

Webcom Communications Corp.
501 South Cherry Street, 11th Floor,
Denver, CO 80246 Phone 720-528-3770
www.MagneticsMag.com

www.MagneticsMag.com


http://www.MagneticsMag.com http://www.MagneticsMag.com

Magnetics Business & Technology - November/December 2019

Table of Contents for the Digital Edition of Magnetics Business & Technology - November/December 2019

Magnetics Business & Technology - November/Decmber 2019
Contents
Editor’s Choice/ Features
Stromag Designs New Fail-Safe Electromagnetic Brakes for Ships, Harbors and Other Industrial Applications
Solving Eddy Current Non-Destructive Testing Benchmark Problem with Integrated Engineering Software’s Program Faraday
Scientists Print Magnetic Liquid Droplets to Create a Revolutionary New Material at Berkeley National Lab
Research & Development
Product News
Industry News
Marketplace/ Advertising Index
New Survey Technique for Interstellar Magnetic Fields Developed by University of Wisconsin
Visions
Magnetics Business & Technology - November/December 2019 - Magnetics Business & Technology - November/Decmber 2019
Magnetics Business & Technology - November/December 2019 - Cover2
Magnetics Business & Technology - November/December 2019 - Contents
Magnetics Business & Technology - November/December 2019 - Editor’s Choice/ Features
Magnetics Business & Technology - November/December 2019 - 5
Magnetics Business & Technology - November/December 2019 - Stromag Designs New Fail-Safe Electromagnetic Brakes for Ships, Harbors and Other Industrial Applications
Magnetics Business & Technology - November/December 2019 - 7
Magnetics Business & Technology - November/December 2019 - 8
Magnetics Business & Technology - November/December 2019 - 9
Magnetics Business & Technology - November/December 2019 - Solving Eddy Current Non-Destructive Testing Benchmark Problem with Integrated Engineering Software’s Program Faraday
Magnetics Business & Technology - November/December 2019 - 11
Magnetics Business & Technology - November/December 2019 - 12
Magnetics Business & Technology - November/December 2019 - 13
Magnetics Business & Technology - November/December 2019 - 14
Magnetics Business & Technology - November/December 2019 - 15
Magnetics Business & Technology - November/December 2019 - 16
Magnetics Business & Technology - November/December 2019 - 17
Magnetics Business & Technology - November/December 2019 - Research & Development
Magnetics Business & Technology - November/December 2019 - 19
Magnetics Business & Technology - November/December 2019 - Product News
Magnetics Business & Technology - November/December 2019 - 21
Magnetics Business & Technology - November/December 2019 - 22
Magnetics Business & Technology - November/December 2019 - 23
Magnetics Business & Technology - November/December 2019 - Industry News
Magnetics Business & Technology - November/December 2019 - 25
Magnetics Business & Technology - November/December 2019 - 26
Magnetics Business & Technology - November/December 2019 - 27
Magnetics Business & Technology - November/December 2019 - Marketplace/ Advertising Index
Magnetics Business & Technology - November/December 2019 - 29
Magnetics Business & Technology - November/December 2019 - Visions
Magnetics Business & Technology - November/December 2019 - Cover3
Magnetics Business & Technology - November/December 2019 - Cover4
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019julyaug
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019janfeb
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011summer
https://www.nxtbookmedia.com