Tech Briefs Magazine - August 2024 - 26
Computer Vision Lends Precision to Robotic Grappling
AI analysis of live camera feed yields delta commands to human operator.
Johnson Space Center, Houston, TX
I
nnovators at NASA's Johnson Space
Center (JSC) have developed computer
vision software that derives target posture
determinations quickly and then instructs
an operator how to properly align
a robotic end-effector with a target that
they are trying to grapple.
As an added benefit, the software's object
identification capability can also help detect
physical defects on targets. This technology
was originally created to aid robotic arm
operators aboard the International Space
Station (ISS) that relied more heavily upon
grappling instructional maneuvers derived
from flight controllers on the ground at
JSCs Mission Control Center (MCC).
Despite the aid of computer-based
models to predict the alignment of
both robotic arm and target, iterative
realignment procedures were often required
to correct botched grapple operations,
costing valuable time. To solve
this problem, NASA's computer vision
software analyzes the live camera feed
from the robotic arms single borescope
camera and provides the operator with
the delta commands required for an
ideal grasp operation.
This process is aided by a machine
learning component that monitors the
camera feed for any of the ISS's potential
target fixtures. Once a target fixture
is identified, proper camera and target
parameters are automatically sequenced
to prepare for grasping operations.
The software includes a machine
learning component that uses a trained
regional Convolutional Neural Network
(r-CNN) to provide the capability to analyze
a live camera feed to determine ISS
fixture targets a robotic arm operator
can interact with on orbit.
This feature is intended to increase
the grappling operational range of
ISS's main robotic arm from a previous
maximum of 0.5 m for certain target
types, to greater than 1.5 m, while significantly
reducing computation times
for grasping operations.
Industrial automation and robotics
applications that rely on computer viA
target is acquired by the vision system. The parameters [X, Y, Z] (cm) are calculated and delta
commands are fed to the human operator to move the robotic arm end-effector to grapple a
moving target. (Image: NASA)
sion solutions may find value in this
software's capabilities. A wide range
of emerging terrestrial robotic applications,
outside of controlled environments,
may also find value in the
dynamic object recognition and state
determination capabilities of this technology
as successfully demonstrated by
NASA on-orbit.
NASA is actively seeking licensees to
commercialize this technology. Please
contact NASA's Licensing Concierge at
Agency-Patent-Licensing@mail.nasa.gov
or call at 202-358-7432 to initiate licensing
discussions. For more information,
visit https://technology.nasa.gov/patent/
MSC-TOPS-114.
Unique Datapath Architecture Yields Real-Time Computing
Architecture unencumbers microprocessors, maximizing computational speed for software.
Johnson Space Center, Houston, TX
I
nnovators at NASA Johnson Space Center
have developed and successfully
flight tested a high-performance computing
platform, known as the Descent
and Landing Computer (DLC), to suit
the demands of safe, autonomous, extraterrestrial
spacecraft landings for robotic
and human exploration missions.
26
Unique to this platform is a datapath
architecture that unencumbers microprocessors
by isolating them from input and
output interruptions, thus staving off latency
and maximizing computational
speed for the flight software. To safely
land, the DLC must process landing-specific
sensor data in real-time and relay this
www.techbriefs.com
information to the primary flight computer
for the spacecraft to avoid environmental
hazards like craters and boulders. The
datapath architecture presented allows
for the DLC's high-speed computational
processing to provide this capability.
The DLC platform is composed of three
key components: a NASA-designed field
Tech Briefs, August 2024
https://technology.nasa.gov/patent/MSC-TOPS-114
https://www.techbriefs.com
Tech Briefs Magazine - August 2024
Table of Contents for the Digital Edition of Tech Briefs Magazine - August 2024
Tech Briefs Magazine - August 2024 - Intro
Tech Briefs Magazine - August 2024 - Sponsor
Tech Briefs Magazine - August 2024 - Cov1
Tech Briefs Magazine - August 2024 - Cov2
Tech Briefs Magazine - August 2024 - 1
Tech Briefs Magazine - August 2024 - 2
Tech Briefs Magazine - August 2024 - 3
Tech Briefs Magazine - August 2024 - 4
Tech Briefs Magazine - August 2024 - 5
Tech Briefs Magazine - August 2024 - 6
Tech Briefs Magazine - August 2024 - 7
Tech Briefs Magazine - August 2024 - 8
Tech Briefs Magazine - August 2024 - 9
Tech Briefs Magazine - August 2024 - 10
Tech Briefs Magazine - August 2024 - 11
Tech Briefs Magazine - August 2024 - 12
Tech Briefs Magazine - August 2024 - 13
Tech Briefs Magazine - August 2024 - 14
Tech Briefs Magazine - August 2024 - 15
Tech Briefs Magazine - August 2024 - 16
Tech Briefs Magazine - August 2024 - 17
Tech Briefs Magazine - August 2024 - 18
Tech Briefs Magazine - August 2024 - 19
Tech Briefs Magazine - August 2024 - 20
Tech Briefs Magazine - August 2024 - 21
Tech Briefs Magazine - August 2024 - 22
Tech Briefs Magazine - August 2024 - 23
Tech Briefs Magazine - August 2024 - 24
Tech Briefs Magazine - August 2024 - 25
Tech Briefs Magazine - August 2024 - 26
Tech Briefs Magazine - August 2024 - 27
Tech Briefs Magazine - August 2024 - 28
Tech Briefs Magazine - August 2024 - 29
Tech Briefs Magazine - August 2024 - 30
Tech Briefs Magazine - August 2024 - 31
Tech Briefs Magazine - August 2024 - 32
Tech Briefs Magazine - August 2024 - 33
Tech Briefs Magazine - August 2024 - 34
Tech Briefs Magazine - August 2024 - 35
Tech Briefs Magazine - August 2024 - 36
Tech Briefs Magazine - August 2024 - 37
Tech Briefs Magazine - August 2024 - 38
Tech Briefs Magazine - August 2024 - 39
Tech Briefs Magazine - August 2024 - 40
Tech Briefs Magazine - August 2024 - Cov3
Tech Briefs Magazine - August 2024 - Cov4
Tech Briefs Magazine - August 2024 - MD-Cov1
Tech Briefs Magazine - August 2024 - MD-Cov2
Tech Briefs Magazine - August 2024 - MD-1
Tech Briefs Magazine - August 2024 - MD-2
Tech Briefs Magazine - August 2024 - MD-3
Tech Briefs Magazine - August 2024 - MD-4
Tech Briefs Magazine - August 2024 - MD-5
Tech Briefs Magazine - August 2024 - MD-6
Tech Briefs Magazine - August 2024 - MD-7
Tech Briefs Magazine - August 2024 - MD-8
Tech Briefs Magazine - August 2024 - MD-9
Tech Briefs Magazine - August 2024 - MD-10
Tech Briefs Magazine - August 2024 - MD-11
Tech Briefs Magazine - August 2024 - MD-12
Tech Briefs Magazine - August 2024 - MD-13
Tech Briefs Magazine - August 2024 - MD-14
Tech Briefs Magazine - August 2024 - MD-15
Tech Briefs Magazine - August 2024 - MD-16
Tech Briefs Magazine - August 2024 - MD-17
Tech Briefs Magazine - August 2024 - MD-18
Tech Briefs Magazine - August 2024 - MD-19
Tech Briefs Magazine - August 2024 - MD-20
Tech Briefs Magazine - August 2024 - MD-21
Tech Briefs Magazine - August 2024 - MD-22
Tech Briefs Magazine - August 2024 - MD-23
Tech Briefs Magazine - August 2024 - MD-24
Tech Briefs Magazine - August 2024 - MD-25
Tech Briefs Magazine - August 2024 - MD-26
Tech Briefs Magazine - August 2024 - MD-27
Tech Briefs Magazine - August 2024 - MD-28
Tech Briefs Magazine - August 2024 - MD-29
Tech Briefs Magazine - August 2024 - MD-30
Tech Briefs Magazine - August 2024 - MD-31
Tech Briefs Magazine - August 2024 - MD-32
Tech Briefs Magazine - August 2024 - MD-33
Tech Briefs Magazine - August 2024 - MD-Cov4
https://www.nxtbook.com/smg/techbriefs/24TB10
https://www.nxtbook.com/smg/techbriefs/24TB09B
https://www.nxtbook.com/smg/techbriefs/24TB09
https://www.nxtbook.com/smg/techbriefs/24TB08
https://www.nxtbook.com/smg/techbriefs/24TB07
https://www.nxtbook.com/smg/techbriefs/24TB06
https://www.nxtbook.com/smg/techbriefs/24TB05B
https://www.nxtbook.com/smg/techbriefs/24TB05
https://www.nxtbook.com/smg/techbriefs/24TB04
https://www.nxtbook.com/smg/techbriefs/24TB03
https://www.nxtbook.com/smg/techbriefs/24TB02
https://www.nxtbook.com/smg/techbriefs/24TB01
https://www.nxtbook.com/smg/techbriefs/23TB12
https://www.nxtbook.com/smg/techbriefs/23TB11
https://www.nxtbook.com/smg/techbriefs/23TB10
https://www.nxtbook.com/smg/techbriefs/23TB09
https://www.nxtbook.com/smg/techbriefs/23TB08
https://www.nxtbook.com/smg/techbriefs/23TB07
https://www.nxtbook.com/smg/techbriefs/23TB06
https://www.nxtbook.com/smg/techbriefs/23TB05
https://www.nxtbook.com/smg/techbriefs/23TB04
https://www.nxtbook.com/smg/techbriefs/23TB03
https://www.nxtbook.com/smg/techbriefs/23TB02
https://www.nxtbook.com/smg/techbriefs/23TB01
https://www.nxtbook.com/smg/Testing/22TB12
https://www.nxtbook.com/smg/techbriefs/22TB12
https://www.nxtbook.com/smg/techbriefs/22TB11
https://www.nxtbook.com/smg/techbriefs/22TB10
https://www.nxtbook.com/smg/techbriefs/22TB09
https://www.nxtbook.com/smg/techbriefs/22TB08
https://www.nxtbook.com/smg/techbriefs/22TB07
https://www.nxtbook.com/smg/techbriefs/22TB06
https://www.nxtbook.com/smg/techbriefs/22TB05-P
https://www.nxtbook.com/smg/techbriefs/22TB05-D
https://www.nxtbook.com/smg/techbriefs/22TB04
https://www.nxtbook.com/smg/techbriefs/22TB03
https://www.nxtbook.com/smg/techbriefs/22TB02
https://www.nxtbook.com/smg/techbriefs/22TB01
https://www.nxtbook.com/smg/techbriefs/21TB12
https://www.nxtbook.com/smg/techbriefs/21TB11
https://www.nxtbook.com/smg/techbriefs/21TB10
https://www.nxtbook.com/smg/techbriefs/21TB09
https://www.nxtbook.com/smg/techbriefs/21TB08
https://www.nxtbook.com/smg/techbriefs/21TB07
https://www.nxtbook.com/smg/techbriefs/21TB06
https://www.nxtbook.com/smg/techbriefs/21TB05
https://www.nxtbook.com/smg/techbriefs/21TB04
https://www.nxtbook.com/smg/techbriefs/21BT03
https://www.nxtbook.com/smg/techbriefs/21TB02
https://www.nxtbookmedia.com