IEEE Circuits and Systems Magazine - Q4 2019 - 18

[69] A. J. Lohn, J. E. Stevens, P. R. Mickel, and M. J. Marinella, "Optimizing
TaOx memristor performance and consistency within the reactive sputtering forbidden region," Appl. Phys. Lett., vol. 103, no. 6, p. 063,502, 2013.
[70] X. Lian, M. Wang, M. Rao, P. Yan, J. J. Yang, and F. Miao, "Characteristics and transport mechanisms of triple switching regimes of TaOx
memristor," Appl. Phys. Lett., vol. 110, no. 17, p. 173,504, 2017.
[71] H. Abunahla et al., "Switching characteristics of microscale unipolar
Pd/Hf/HfO2/Pd memristors," Microelectron. Eng., vol. 185, pp. 35-42, 2018.
[72] B. Jin-shun and H. Zheng-sheng, "Study on Hf/HfO2 bipolar resistive
random-access-memory," J. Functional Mater. Devices, vol. 5, p. 002, 2014.
[73] H. Jiang et al., Sci. Rep., vol. 6, p. 28,525, 2016.
[74] S. H. Jo, K.-H. Kim, and W. Lu, "Programmable resistance switching in nanoscale two-terminal devices," Nano Lett., vol. 9, no. 1, pp.
496-500, 2009.
[75] A. Radoi, M. Dragoman, and D. Dragoman, "Memristor device
based on carbon nanotubes decorated with gold nanoislands," Appl.
Phys. Lett., vol. 99, no. 9, pp. 093,102, 2011. doi: 10.1063/1.3633352.
[76] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouance, S. Fusil,
X. Moya, and M. Bibes, "A ferroelectric memristor," Nature Materials,
vol. 11, pp. 860-864, 2012.
[77] T. D. Dongale et al., "Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route," Mater. Sci. Semicond. Process.
vol. 40, no. Suppl. C, pp. 523-526, 2015. [Online]. Available: http://www
.sciencedirect.com/science/article/pii/S1369800115300408
[78] T. D. Dongale et al., "Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method," Electron. Mater. Lett., vol. 11, no. 6,
pp. 944-948, Nov. 2015. doi: 10.1007/s13391-015-4180-4
[79] A. Ascoli, R. Tetzlaff, F. Corinto, and M. Gilli, "PSpice switch-based
versatile memristor model," in Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS), 2013, pp. 205-208.
[80] D. Wheeler et al., "Fabrication and characterization of tungsten-oxide-based memristors for neuromorphic circuits," in Proc. IEEE 14th Int.
Workshop Cellular Nanoscale Networks and their Applications (CNNA),
2014, pp. 1-2.
[81] K. Miller, K. S. Nalwa, A. Bergerud, N. M. Neihart, and S. Chaudhary,
"Memristive behavior in thin anodic titania," IEEE Electron Device Lett.,
vol. 31, no. 7, pp. 737-739, 2010.
[82] O. Kavehei, K. Cho, S. Lee, S.-J. Kim, S. Al-Sarawi, D. Abbott, and
K. Eshraghian, "Fabrication and modeling of Ag/TiO/ITO memristor,"
in Proc. IEEE 54th Int. Midwest Symp. Circuits and Systems (MWSCAS),
2011, pp. 1-4.
[83] L. Gao, P.-Y. Chen, and S. Yu, "NbOx based oscillation neuron for
neuromorphic computing," Appl. Phys. Lett., vol. 111, no. 10, p. 103,503,
2017. [Online].
[84] C. Funck et al., "Multidimensional simulation of threshold switching in NbO2 based on an electric field triggered thermal runaway model," Adv. Electron. Mater. vol. 2, no. 7, p. 1,600,169, [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600169
[85] G. A. Gibson et al., "An accurate locally active memristor model for
s-type negative differential resistance in NbOx," Appl. Phys. Lett., vol.
108, no. 2, p. 023,505, 2016. [Online].
[86] J. P. Strachan et al., "State dynamics and modeling of tantalum
oxide memristors," IEEE Trans. on Electron Devices, vol. 60, no. 7, pp.
2194-2202, July 2013.
[87] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, "VTEAM:
A general model for voltage-controlled memristors," IEEE Trans. Circuits
Syst. II, Express Briefs, vol. 62, no. 8, pp. 786-790, 2015.
[88] Z. Jiang et al., "A compact model for metal-oxide resistive random
access memory with experiment verification," IEEE Trans. Electron. Devices, vol. 63, no. 5, pp. 1884-1892, May 2016.
[89] K. Fleck, C. La Torre, N. Aslam, S. Hoffmann-Eifert, U. Böttger,
and S. Menzel, "Uniting gradual and abrupt set processes in resistive
switching oxides," Phys. Rev. Appl., vol. 6, p. 064,015, Dec. 2016. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevApplied.6.064015
[90] A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, and T. Prodromakis, "Unsupervised learning in probabilistic neural networks with
multi-state metal-oxide memristive synapses," Nature Commun., vol. 4,
2016.
[91] Y. Pershin and M. D. Ventra, "Solving mazes memristors: A massively parallel approach," vol. 84, p. 046,703, Oct. 2011.
[92] A. Ascoli, R. Tetzlaff, L. O. Chua, J. P. Strachan, and R. S. Williams,
"History erase effect in a non-volatile memristor," IEEE Trans. Circuits
Syst. I, Regular Papers, vol. 63, no. 3, pp. 389-400, Mar. 2016.

18

IEEE CIRCUITS AND SYSTEMS MAGAZINE

[93] S. Ghedira, F. O. Rziga, K. Mbarek, and K. Besbes, "Dynamical resistive switching of a generic memristor model: Analysis and simulation,"
in Proc. Int. Conf. Engineering MIS (ICEMIS), May 2017, pp. 1-5.
[94] D. Radakovits and N. TaheriNejad, "Implementation and characterization of a memristive memory system," in Proc. IEEE 32nd Canadian
Conf. Electrical and Computer Engineering (CCECE), May 2019, pp. 1-5.
[95] Knowm, "Knowm BS-AF-W memristor datasheet," 2017. [Online]. Available: https://knowm.org/wp-content/uploads/DM8-16DIP-BS-AF-W.pdf
[96] Crossbar. (2017). ReRAM. [Online]. Available: https://www.crossbar
-inc.com/en/
[97] D. Biolek, M. Di Ventra, and Y. V. Pershin, "Reliable spice simulations of memristors, memcapacitors and meminductors," arXiv Preprint, arXiv:1307.2717, 2013.
[98] B. K'A and E. E. Swartzlander, "Memristor-based arithmetic," in
Conf. Rec. 44th Asilomar Conf. Sig., Sys. and Comp., 2010.
[99] S. Haghiri, A. Nemati, S. Feizi, A. Amirsoleimani, A. Ahmadi, and M.
Ahmadi, "A memristor based binary multiplier," in Proc. IEEE 30th Canadian Conf. Electrical and Computer Engineering (CCECE), Apr. 2017, pp. 1-4.
[100] A. Karimi and A. Rezai, "Novel design for a memristor-based full
adder using a new imply logic approach," J. Computational Electronics,
vol. 17, no. 3, pp. 1303-1314, Sept. 2018. https://doi.org/10.1007/s10825
-018-1198-5
[101] S. G. Rohani, N. TaheriNejad, and D. Radakovits, "A semi-parallel
full-adder in imply logic," Submitted to The IEEE Trans. on VLSI Systems,
June 2018.
[102] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers, "A memristor device model," IEEE Electron Device Lett., vol. 32, no.
10, pp. 1436-1438, 2011.
[103] Y. N. Joglekar and S. J. Wolf, "The elusive memristor: Properties of
basic electrical circuits," Eur. J. Phys., vol. 30, no. 4, p. 661, 2009.
[104] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM:
Threshold adaptive memristor model," IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 60, no. 1, pp. 211-221, 2013.
[105] Mar. 2018. [Online]. Available: https://www.ict.tuwien.ac.at/staff/
taherinejad/projects/memristor/files/VTEAM.sub
[106] S. H. Jo, K.-H. Kim, and W. Lu, "High-density crossbar arrays based
on a Si memristive system," Nano letters, vol. 9, no. 2, pp. 870-874, 2009.
[107] M. Hu, H. Li, Y. Chen, X. Wang, and R. E. Pino, "Geometry variations analysis of TiO2 thin-film and spintronic memristors," in Proc.
IEEE 16th Asia and South Pacific Design Automation Conf. (ASP-DAC),
2011, pp. 25-30.
[108] B. Jiao et al., "Resisitive switching variability study on 1T1R AlOx/
WOx-based RRAM array," in Proc. IEEE Int. Conf. Electron Devices and
Solid-State Circuits (EDSSC), 2013, pp. 1-2.
[109] S. Yu, X. Guan, and H.-S. P. Wong, "On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, Monte Carlo
simulation, and experimental characterization," in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2011, p. 17-3.
[110] D. Niu, Y. Chen, C. Xu, and Y. Xie, "Impact of process variations on
emerging memristor," in Proc. 47th Design Automation Conf. ACM, 2010,
pp. 877-882.
[111] P. Pouyan, E. Amat, and A. Rubio, "Statistical lifetime analysis of
memristive crossbar matrix," in Proc. IEEE 10th Int. Conf. Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2015, pp. 1-6.
[112] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, "Sub-nanosecond switching of a tantalum oxide memristor,"
Nanotechnology, vol. 22, no. 48, p. 485,203, 2011.
[113] H. Lee et al., "Evidence and solution of over-RESET problem for HfOx
based resistive memory with sub-ns switching speed and high endurance," in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2010, pp. 19-17.
[114] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
"Memristor-based memory: The sneak paths problem and solutions,"
Microelectron. J., vol. 44, no. 2, pp. 176-183, 2013.
[115] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "Sneak-path constraints
in memristor crossbar arrays," in Proc. IEEE Int. Symp. Information Theory Proc. (ISIT), 2013, pp. 156-160.
[116] R. Berdan, A. Serb, A. Khiat, A. Regoutz, C. Papavassiliou, and T. Prodromakis, "A μ-controller-based system for interfacing selectorless RRAM crossbar arrays," IEEE Trans. Electron. Devices, vol. 62, no. 7, pp. 2190-2196, 2015.
[117] J. K. Eshraghian, K.-R. Cho, H. H. Iu, T. Fernando, N. Iannella, S.-M.
Kang, and K. Eshraghian, "Maximization of crossbar array memory using fundamental memristor theory," IEEE Trans. Circuits Syst. II, Express
Briefs, vol. 64, no. 12, pp. 1402-1406, 2017.

FOURTH QUARTER 2019


https://www.knowm.org/wp-content/uploads/DM8-16DIP-BS-AF-W.pdf https://www.crossbarinc.com/en/ https://www.crossbarinc.com/en/ https://www.doi.org/10.1007/s10825-018-1198-5 https://www.doi.org/10.1007/s10825-018-1198-5 http://www.sciencedirect.com/science/article/pii/S1369800115300408 http://www.sciencedirect.com/science/article/pii/S1369800115300408 https://www.ict.tuwien.ac.at/staff/aherinejad/projects/memristor/files/VTEAM.sub https://www.ict.tuwien.ac.at/staff/aherinejad/projects/memristor/files/VTEAM.sub https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600169 https://link.aps.org/doi/10.1103/PhysRevApplied.6.064015

IEEE Circuits and Systems Magazine - Q4 2019

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2019

Contents
IEEE Circuits and Systems Magazine - Q4 2019 - Cover1
IEEE Circuits and Systems Magazine - Q4 2019 - Cover2
IEEE Circuits and Systems Magazine - Q4 2019 - 1
IEEE Circuits and Systems Magazine - Q4 2019 - Contents
IEEE Circuits and Systems Magazine - Q4 2019 - 3
IEEE Circuits and Systems Magazine - Q4 2019 - 4
IEEE Circuits and Systems Magazine - Q4 2019 - 5
IEEE Circuits and Systems Magazine - Q4 2019 - 6
IEEE Circuits and Systems Magazine - Q4 2019 - 7
IEEE Circuits and Systems Magazine - Q4 2019 - 8
IEEE Circuits and Systems Magazine - Q4 2019 - 9
IEEE Circuits and Systems Magazine - Q4 2019 - 10
IEEE Circuits and Systems Magazine - Q4 2019 - 11
IEEE Circuits and Systems Magazine - Q4 2019 - 12
IEEE Circuits and Systems Magazine - Q4 2019 - 13
IEEE Circuits and Systems Magazine - Q4 2019 - 14
IEEE Circuits and Systems Magazine - Q4 2019 - 15
IEEE Circuits and Systems Magazine - Q4 2019 - 16
IEEE Circuits and Systems Magazine - Q4 2019 - 17
IEEE Circuits and Systems Magazine - Q4 2019 - 18
IEEE Circuits and Systems Magazine - Q4 2019 - 19
IEEE Circuits and Systems Magazine - Q4 2019 - 20
IEEE Circuits and Systems Magazine - Q4 2019 - 21
IEEE Circuits and Systems Magazine - Q4 2019 - 22
IEEE Circuits and Systems Magazine - Q4 2019 - 23
IEEE Circuits and Systems Magazine - Q4 2019 - 24
IEEE Circuits and Systems Magazine - Q4 2019 - 25
IEEE Circuits and Systems Magazine - Q4 2019 - 26
IEEE Circuits and Systems Magazine - Q4 2019 - 27
IEEE Circuits and Systems Magazine - Q4 2019 - 28
IEEE Circuits and Systems Magazine - Q4 2019 - 29
IEEE Circuits and Systems Magazine - Q4 2019 - 30
IEEE Circuits and Systems Magazine - Q4 2019 - 31
IEEE Circuits and Systems Magazine - Q4 2019 - 32
IEEE Circuits and Systems Magazine - Q4 2019 - 33
IEEE Circuits and Systems Magazine - Q4 2019 - 34
IEEE Circuits and Systems Magazine - Q4 2019 - 35
IEEE Circuits and Systems Magazine - Q4 2019 - 36
IEEE Circuits and Systems Magazine - Q4 2019 - 37
IEEE Circuits and Systems Magazine - Q4 2019 - 38
IEEE Circuits and Systems Magazine - Q4 2019 - 39
IEEE Circuits and Systems Magazine - Q4 2019 - 40
IEEE Circuits and Systems Magazine - Q4 2019 - 41
IEEE Circuits and Systems Magazine - Q4 2019 - 42
IEEE Circuits and Systems Magazine - Q4 2019 - 43
IEEE Circuits and Systems Magazine - Q4 2019 - 44
IEEE Circuits and Systems Magazine - Q4 2019 - 45
IEEE Circuits and Systems Magazine - Q4 2019 - 46
IEEE Circuits and Systems Magazine - Q4 2019 - 47
IEEE Circuits and Systems Magazine - Q4 2019 - 48
IEEE Circuits and Systems Magazine - Q4 2019 - 49
IEEE Circuits and Systems Magazine - Q4 2019 - 50
IEEE Circuits and Systems Magazine - Q4 2019 - 51
IEEE Circuits and Systems Magazine - Q4 2019 - 52
IEEE Circuits and Systems Magazine - Q4 2019 - 53
IEEE Circuits and Systems Magazine - Q4 2019 - 54
IEEE Circuits and Systems Magazine - Q4 2019 - 55
IEEE Circuits and Systems Magazine - Q4 2019 - 56
IEEE Circuits and Systems Magazine - Q4 2019 - 57
IEEE Circuits and Systems Magazine - Q4 2019 - 58
IEEE Circuits and Systems Magazine - Q4 2019 - 59
IEEE Circuits and Systems Magazine - Q4 2019 - 60
IEEE Circuits and Systems Magazine - Q4 2019 - 61
IEEE Circuits and Systems Magazine - Q4 2019 - 62
IEEE Circuits and Systems Magazine - Q4 2019 - 63
IEEE Circuits and Systems Magazine - Q4 2019 - 64
IEEE Circuits and Systems Magazine - Q4 2019 - 65
IEEE Circuits and Systems Magazine - Q4 2019 - 66
IEEE Circuits and Systems Magazine - Q4 2019 - 67
IEEE Circuits and Systems Magazine - Q4 2019 - 68
IEEE Circuits and Systems Magazine - Q4 2019 - Cover3
IEEE Circuits and Systems Magazine - Q4 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com