IEEE Geoscience and Remote Sensing Magazine - September 2015 - 62

Abstract-Because of sensor malfunction and poor
atmospheric conditions, there is usually a great deal of
missing information in optical remote sensing data,
which reduces the usage rate and hinders the follow-up
interpretation. In the past decades, missing information
reconstruction of remote sensing data has become an active research field, and a large number of algorithms have
been developed. However,
to the best of our knowledge, there has not, to date,
MIssINg INFORMaTION
been a study that has been
ReCONsTRUCTION OF
aimed at expatiating and
summarizing the current
ReMOTe seNsINg DaTa Is OF
situation. This is therefore
gReaT IMpORTaNCe FOR The
our motivation in this resUbseqUeNT applICaTIONs.
view. This paper provides
an introduction to the principles and theories of missing information reconstruction of remote sensing data.
We classify the established and emerging algorithms into
four main categories, followed by a comprehensive comparison of them from both experimental and theoretical
perspectives. This paper also predicts the promising future research directions.
I. INTRODUCTION
emote sensing instruments can capture information
about the atmosphere, ocean, and the Earth's surface.
They are one of the most frequently used and most powerful approaches to understanding and investigating our
planet. However, because of defective sensors and poor
atmospheric conditions (e.g., thick clouds), the acquired
remote sensing data are often so incomplete (we also say
that they have missing information) that the data usability
is greatly reduced.
For example, 15 of the 20 detectors in the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) band
6 are ineffective [1]; the scan line corrector (SLC) of the
Landsat enhanced thematic mapper plus (ETM+) sensor
has permanently failed [2]; and the ozone monitoring instrument (OMI) onboard the Aura satellite is subject to a

R

(a)

(b)

(c)

row anomaly problem. On average, at any one time, approximately 35% of the global land surface is obscured by
clouds [3], and in an individual country, the rate of cloud
cover can be much higher, e.g., in Canada, from 50% to
80% of the Earth's surface is covered by clouds in midmorning [4]. Since cloud cover is frequently inevitable in
the observation process, passive remote sensing data contain lots of missing information. Clouds in remote sensing data are useful information for liquid water research;
however, in this paper, they are considered as useless information that obstructs the observation. It is noteworthy
that only passive remote sensing imageries are affected by
atmospheric conditions; thus, when it comes to the atmosphere (or clouds) in the following descriptions, the data
are from passive sensor platforms.
Dead pixels resulting from sensor failure or random error are also a common phenomenon. Missing information
limits the regular and further applications of remote sensing data, e.g. classification [5], unmixing, target detection,
etc. As a result, reconstructing the missing information of
remote sensing data is of great significance for many practical applications (e.g., improving the subsequent interpretation accuracy and enhancing the data availability).
In order to intuitively perceive the information loss of
remote sensing data, we show some concrete examples in
Fig. 1. In short, Fig. 1(a)-(c) are the consequences of sensor failure, and Fig. 1(d)-(f) are the consequences of cloud
obscuration. The figures include digital number (DN) value
images and quantitative products of remote sensing, i.e., reflectance, land surface temperature (LST), the normalized
difference vegetation index (NDVI), and ozone.
In our opinion, according to the different sources of
the complementary information when reconstructing the
missing information, the present algorithms can be primarily classified into four categories: 1) spatial-based methods,
without any other auxiliary information source; 2) spectralbased methods, which extract the complementary information from other spectra; 3) temporal-based methods, which
extract the complementary information from other data
acquired at the same position and at different time periods
(hereafter, we say they are multitemporal); and 4) hybrid

(d)

(e)

(f)

FIgURe 1. Several examples of remote sensing data with missing information. In addition to the white clouds, the dark regions also represent
missing information. (a) Reflectance of Aqua MODIS band 6 with sensor failure. (b) DN value of Landsat ETM+ with the SLC-off problem. (c)
Ozone of Aura OMI with the row anomaly problem. (d) DN value of IKONOS-2 with cloud obscuration. (e) LST of MODIS with cloud obscuration. (f) NDVI of MODIS with cloud obscuration. Note that the dynamic range [-1, 1] is stretched linearly to [0, 255] for the visual effect.

62

ieee Geoscience and remote sensing magazine

september 2015



Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - September 2015

IEEE Geoscience and Remote Sensing Magazine - September 2015 - Cover1
IEEE Geoscience and Remote Sensing Magazine - September 2015 - Cover2
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 1
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 2
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 3
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 4
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 5
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 6
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 7
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 8
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 9
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 10
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 11
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 12
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 13
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 14
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 15
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 16
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 17
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 18
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 19
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 20
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 21
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 22
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 23
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 24
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 25
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 26
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 27
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 28
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 29
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 30
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 31
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 32
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 33
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 34
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 35
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 36
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 37
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 38
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 39
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 40
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 41
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 42
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 43
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 44
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 45
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 46
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 47
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 48
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 49
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 50
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 51
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 52
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 53
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 54
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 55
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 56
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 57
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 58
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 59
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 60
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 61
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 62
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 63
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 64
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 65
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 66
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 67
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 68
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 69
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 70
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 71
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 72
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 73
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 74
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 75
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 76
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 77
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 78
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 79
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 80
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 81
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 82
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 83
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 84
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 85
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 86
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 87
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 88
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 89
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 90
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 91
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 92
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 93
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 94
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 95
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 96
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 97
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 98
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 99
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 100
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 101
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 102
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 103
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 104
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 105
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 106
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 107
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 108
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 109
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 110
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 111
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 112
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 113
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 114
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 115
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 116
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 117
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 118
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 119
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 120
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 121
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 122
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 123
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 124
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 125
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 126
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 127
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 128
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 129
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 130
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 131
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 132
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 133
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 134
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 135
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 136
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 137
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 138
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 139
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 140
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 141
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 142
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 143
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 144
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 145
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 146
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 147
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 148
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 149
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 150
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 151
IEEE Geoscience and Remote Sensing Magazine - September 2015 - 152
IEEE Geoscience and Remote Sensing Magazine - September 2015 - Cover3
IEEE Geoscience and Remote Sensing Magazine - September 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com