IEEE Electrification Magazine - March 2014 - 57

The battery is a life
vein of consumer electronic
devices such as MP3 players,
cell phones, tablets, digital
cameras, laptop computers,
and others.
households and commercial buildings is expected to
remarkably enhance their energy efficiencies since the
major share of their consumption is formed by devices
that require a dc link in the interface point or in one of
the conversion stages. in this regard, appliances such as
light-emitting diode (led) lighting, consumer electronics,
and variable-frequency drive (VFd) machines (refrigerators, heaters, air conditioners, washing machines, etc.)
may contribute to overall efficiency improvement by
omitting one or several dc/ac conversion stage(s). another
example for the legitimate use of dc architecture is an
electrical power supply of a typical industrial factory
facility where a potential for improving the propulsion
efficiency stems from a possibility to run a group of VFd
motors from the common dc link.
today, residential dc architectures operating at 380 V
are in the development stage and are only a few steps
away from real-world implementation. indeed, recent
studies have roughly estimated their cost effectiveness,
indicating up to 30% efficiency gain in comparison with
traditional low-voltage ac. electrical distributions of some
of the applications mentioned here are addressed in more
detail in the following sections, which are sequenced in
line with their growing nominal voltage.

overcharge/discharge operation. therefore, a battery management system (BMs) whose main function is recharge
control, state of charge (soc), and state-of-health monitoring has become a constituent part of modern gadgets. in
relation to the required storage capacity, it is generally possible to achieve a sufficient storage capacity for smartphones by using a single 3.7-V li-Po battery cell, whereas
two to three paralleled cells are needed for tablets and digital cameras. on the other hand, it is a common practice to
assemble series-parallel cell arrangements for supplying
more-demanding devices such as high-performance laptops. For these kinds of packs, commercial BMss often
come with an integrated equalization circuit, which is necessary for balancing the charge among the respective cells.
By referring back to Figure 2, one may observe that the
dc-ac converter is the ultimate conversion step toward the
grid. with the aim of increased energy efficiency, this conversion stage may be avoided by using only a single stage
dc-dc, given that there are readily accessible dc sockets

Wi-Fi
Module

Low-Power Consumer Electronics
the battery is a life vein of consumer electronic devices
such as MP3 players, cell phones, tablets, digital cameras,
laptop computers, and others. their entire electrical systems consist of a number of dc-dc converter stages that
are connected to battery terminals. these converters
transform the voltage to levels appropriate for fundamental loads such as displays, processors, cameras, wireless
modules, and other application adapted consumption (see
Figure 2 for the electrical layout of a modern smartphone).
today, lithium-ion polymer (li-Po) battery cells are a
common choice for consumer electronics because of their
particularly high energy density and a convenient property
that allows for a high degree of flexibility in the hardware
design. however, unlike batteries from the previous generations, a significant shortening of the lifetime or even hazardous conditions may occur if lithium-based batteries are
exposed to mistreatments such as high temperature or

LCD
Panel

Touch
Screen
Control

dc−dc

Camera

dc−dc

3.7

-20

Wall
Socket,
ac Grid

dc−dc

-Vd

cB

Battery
Pack
Adapter
Charge Control

dc−dc

us

Optional Cell
Charge
Equalization
(for Series Cell
Connections)

ac−dc dc−dc

Figure 2. The typical electrical layout of a smartphone.
	

IEEE Electrific ation Magazine / MARCH 2 0 1 4

57



Table of Contents for the Digital Edition of IEEE Electrification Magazine - March 2014

IEEE Electrification Magazine - March 2014 - Cover1
IEEE Electrification Magazine - March 2014 - Cover2
IEEE Electrification Magazine - March 2014 - 1
IEEE Electrification Magazine - March 2014 - 2
IEEE Electrification Magazine - March 2014 - 3
IEEE Electrification Magazine - March 2014 - 4
IEEE Electrification Magazine - March 2014 - 5
IEEE Electrification Magazine - March 2014 - 6
IEEE Electrification Magazine - March 2014 - 7
IEEE Electrification Magazine - March 2014 - 8
IEEE Electrification Magazine - March 2014 - 9
IEEE Electrification Magazine - March 2014 - 10
IEEE Electrification Magazine - March 2014 - 11
IEEE Electrification Magazine - March 2014 - 12
IEEE Electrification Magazine - March 2014 - 13
IEEE Electrification Magazine - March 2014 - 14
IEEE Electrification Magazine - March 2014 - 15
IEEE Electrification Magazine - March 2014 - 16
IEEE Electrification Magazine - March 2014 - 17
IEEE Electrification Magazine - March 2014 - 18
IEEE Electrification Magazine - March 2014 - 19
IEEE Electrification Magazine - March 2014 - 20
IEEE Electrification Magazine - March 2014 - 21
IEEE Electrification Magazine - March 2014 - 22
IEEE Electrification Magazine - March 2014 - 23
IEEE Electrification Magazine - March 2014 - 24
IEEE Electrification Magazine - March 2014 - 25
IEEE Electrification Magazine - March 2014 - 26
IEEE Electrification Magazine - March 2014 - 27
IEEE Electrification Magazine - March 2014 - 28
IEEE Electrification Magazine - March 2014 - 29
IEEE Electrification Magazine - March 2014 - 30
IEEE Electrification Magazine - March 2014 - 31
IEEE Electrification Magazine - March 2014 - 32
IEEE Electrification Magazine - March 2014 - 33
IEEE Electrification Magazine - March 2014 - 34
IEEE Electrification Magazine - March 2014 - 35
IEEE Electrification Magazine - March 2014 - 36
IEEE Electrification Magazine - March 2014 - 37
IEEE Electrification Magazine - March 2014 - 38
IEEE Electrification Magazine - March 2014 - 39
IEEE Electrification Magazine - March 2014 - 40
IEEE Electrification Magazine - March 2014 - 41
IEEE Electrification Magazine - March 2014 - 42
IEEE Electrification Magazine - March 2014 - 43
IEEE Electrification Magazine - March 2014 - 44
IEEE Electrification Magazine - March 2014 - 45
IEEE Electrification Magazine - March 2014 - 46
IEEE Electrification Magazine - March 2014 - 47
IEEE Electrification Magazine - March 2014 - 48
IEEE Electrification Magazine - March 2014 - 49
IEEE Electrification Magazine - March 2014 - 50
IEEE Electrification Magazine - March 2014 - 51
IEEE Electrification Magazine - March 2014 - 52
IEEE Electrification Magazine - March 2014 - 53
IEEE Electrification Magazine - March 2014 - 54
IEEE Electrification Magazine - March 2014 - 55
IEEE Electrification Magazine - March 2014 - 56
IEEE Electrification Magazine - March 2014 - 57
IEEE Electrification Magazine - March 2014 - 58
IEEE Electrification Magazine - March 2014 - 59
IEEE Electrification Magazine - March 2014 - 60
IEEE Electrification Magazine - March 2014 - 61
IEEE Electrification Magazine - March 2014 - 62
IEEE Electrification Magazine - March 2014 - 63
IEEE Electrification Magazine - March 2014 - 64
IEEE Electrification Magazine - March 2014 - 65
IEEE Electrification Magazine - March 2014 - 66
IEEE Electrification Magazine - March 2014 - 67
IEEE Electrification Magazine - March 2014 - 68
IEEE Electrification Magazine - March 2014 - 69
IEEE Electrification Magazine - March 2014 - 70
IEEE Electrification Magazine - March 2014 - 71
IEEE Electrification Magazine - March 2014 - 72
IEEE Electrification Magazine - March 2014 - 73
IEEE Electrification Magazine - March 2014 - 74
IEEE Electrification Magazine - March 2014 - 75
IEEE Electrification Magazine - March 2014 - 76
IEEE Electrification Magazine - March 2014 - 77
IEEE Electrification Magazine - March 2014 - 78
IEEE Electrification Magazine - March 2014 - 79
IEEE Electrification Magazine - March 2014 - 80
IEEE Electrification Magazine - March 2014 - 81
IEEE Electrification Magazine - March 2014 - 82
IEEE Electrification Magazine - March 2014 - 83
IEEE Electrification Magazine - March 2014 - 84
IEEE Electrification Magazine - March 2014 - 85
IEEE Electrification Magazine - March 2014 - 86
IEEE Electrification Magazine - March 2014 - 87
IEEE Electrification Magazine - March 2014 - 88
IEEE Electrification Magazine - March 2014 - 89
IEEE Electrification Magazine - March 2014 - 90
IEEE Electrification Magazine - March 2014 - 91
IEEE Electrification Magazine - March 2014 - 92
IEEE Electrification Magazine - March 2014 - 93
IEEE Electrification Magazine - March 2014 - 94
IEEE Electrification Magazine - March 2014 - 95
IEEE Electrification Magazine - March 2014 - 96
IEEE Electrification Magazine - March 2014 - 97
IEEE Electrification Magazine - March 2014 - 98
IEEE Electrification Magazine - March 2014 - 99
IEEE Electrification Magazine - March 2014 - 100
IEEE Electrification Magazine - March 2014 - 101
IEEE Electrification Magazine - March 2014 - 102
IEEE Electrification Magazine - March 2014 - 103
IEEE Electrification Magazine - March 2014 - 104
IEEE Electrification Magazine - March 2014 - Cover3
IEEE Electrification Magazine - March 2014 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com